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INTRODUCTION 
 

Robert M. Solow in his revolutionary article Solow (1956) has shown how diminish-
ing marginal product of capital constitutes barrier to long-run economic growth. Since then, a 
lot of attention has been paid to mechanism of overcoming diminishing marginal product of 
capital and produced inputs in general. Three important approaches have been developed: The 
first one introduces spill-over effects and so called learning-by-doing (e.g., Romer, 1986). In 
these models, positive externalities in the form of spill-over offset diminishing marginal 
product. The second one starting with Lucas (1988) deals with a broad notion of capital in-
cluding human capital which unlike raw labour can be accumulated and thus helps to over-
come tendency to diminishing marginal product. The last one introduces substitutable pro-
ducer goods, increasing variety or quality of which enable constant returns to scale and an 
endogenous growth (Romer, 1987 and 1990, Grossman and Helpman, 1991, Aghion and 
Howitt, 1992); we refer to these models as models of technological change.  

Models based on these assumptions have one common characteristic: no time is 
needed to transform inputs into output – production is instantaneous. Even in the case of 
models of technological change with increasing variety of producer goods which are not per-
fectly substitutable in production (first introduced by Romer, 1990), there is no difference in 
the way they are produced or used as inputs. Assumption of perfect homogeneity has been 
only partially relaxed by Grossman and Helpman (1991) and Aghion and Howitt (1992) who 
introduced quality ladders and allowed for producer goods of different quality. Both ap-
proaches (one based on increasing variety and one based on increasing quality of producer 
goods) retained an assumption of instantaneous production; various producer goods, whether 
of different quality or not, are combined into  final good at the single moment in time. 

Kydland and Prescott (1982) introduced time factor in the analysis of business cycle. 
In their model, multiple periods are required to build new capital and only finished capital 
enters production process. They called this time-to-build technology and showed its impor-
tance in economic fluctuations. 

Asea and Zak (1999) introduced time-to-build technology in a simple model of neo-
classical growth as formulated by Cass (1965) and Koopmans (1965). They focused on transi-
tional dynamics to steady state and showed that lag between investment and production leads 
to oscillatory behavior of the model. Winker et al. (2005) investigated time-to-build factor in 
neoclassical model with Leontief production function and also focused on transitional dynam-
ics, mainly on the relationship between the frequencies of oscillations and the length of time 
lag between investment and production. Bambi (2006) worked with time-to-build factor in the 
AK-model and his emphasis is also oscillatory transitional dynamics to the steady state. 

Our approach differs from above mentioned publications in several aspects. Firstly, 
inspired by Austrian theory of capital, we assume that not only production of durable capital 
requires multiple periods, but we generalize this feature to all production. We refer to this 
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technology as time-consuming production. Secondly, we assume that number of periods 
needed to complete production process changes as technology improves. Thirdly, we use nei-
ther neoclassical, nor AK model as our working framework; instead, we incorporate time fac-
tor in the model of technological change. Lastly, we are not focused on the short-run transi-
tional dynamics; our emphasis is on the possibilities of long-run economic growth. We will 
argue that an introduction of time factor may significantly alter the way we think about 
growth and about technological change especially. Furthermore, this paper can be understood 
as an attempt to formalize the main ideas of Austrian theory of capital and to discuss its role 
in the theory of economic growth.  

Following section explains our motivation to analyze above mentioned issues and 
gives an overview of Austrian theory of capital. In Section 2 we set up the model, in Section 3 
we solve for short-run and long-run steady states. As it will turn out that the model is not 
compatible with endogenous growth, in Section 4 we propose various ways of modifying the 
model to allow for endogenous growth. Final section concludes the paper. 

1. MOTIVATION AND THEORETICAL BACKGROUD 
 

Since the year 1500, world GDP per capita has grown by the factor of 11.5.2 In some 
regions, increase in material well-being was even higher, today’s product per capita in West-
ern Europe being 28 times the value in 1500, in North America 75 times the value in 1500. 
However, nor average North American consumes 75 times more kilograms of goods, nor av-
erage Western European 28 times more. The main difference between today’s production and 
production in 1500 is not in its quantity, but in its quality. Our ability, our know-how to pro-
duce out of the same inputs (labour and soil) products and services which yield more utility, 
this is arguably the essence of technological progress, technological change and ultimate 
source of economic growth.3 

This idea was formalized by Romer (1990) who in his pioneering work focused on in-
creasing number of ‘designs,’ each design being the set of instruction for mixing together raw 
materials. Larry E. Jones and Rodolfo E. Manuelli in their overview of theories of economic 
growth The Sources of Growth build similar model based on following assumptions: At any 
given time there exists K designs according to which, in K different sectors, K types of perish-
able capital goods are produced out of labour. These K types of capital are instantaneously 
mixed with labour to produce final product. One part of final product is consumed; another 
part is used as input in R&D where new designs are invented. Crucial assumption is that increase 

                                                 
2 All historical data are according to Maddison (2010). 
3 „The raw materials that we use have not changed, but as a result of trial and error, experimentation, refine-
ment, and scientific investigation, the instructions that we follow for combining raw materials have become 
vastly more sophisticated. One hundred years ago, all we could do to get visual stimulation from iron oxide was 
to use it as a pigment. Now we put it on plastic tape and use it to make videocassette recordings.” Romer (1990), 
p. 72. 
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in one type of capital goods does not diminish marginal product of another types of capital 
goods. Therefore, increasing number of designs leads to long-run economic growth. Function-
ing of the Jones-Manuelli is depicted in Scheme 1. From the formal point of view, a model 
which we present in this paper can be understood as direct modification of Jones-Manuelli 
model. 

 
S c h e m e   1 
Instantaneous production in Jones-Manuelli model 

 

 

However, there is one feature of production process that can be considered missing in 
Romer’s or in Jones-Manuelli model. To ‘assemble’ K different types of capital into one final 
product takes time. Much more different operations are needed to create more sophisticated 
final product. Think about medieval scholars using an abacus. To construct the abacus crafts-
men chop a tree, manufacture a wooden frame, bars and balls, drill a hole in every ball and 
assemble the abacus. Now suppose that scholars find a textbook thoroughly explaining how to 
construct a modern calculator. They hire the best craftsmen to do it. However, innumerably 
more steps are necessary to construct the calculator as opposed to the abacus.  Different ores 
and raw materials are to be mined and finely processed. Tiny semiconductor and plastic com-
ponents are to be manufactured out of which complicated integrated circuits and digital display 
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are to be constructed. Battery is to be made out of conductive electrolyte and electrodes and 
so on. It would not only take more steps to construct a calculator, it would take more time to 
do that. In the medieval state of technology, it might take years, maybe decades to construct a 
calculator. 

The emphasis on time element in production process can be traced back to Menger 
(1871), Jevons (1871) and Bőhm-Bowerk (1884) and it constitutes the backbone of Austrian 
theory of capital (ATC).4 In the following brief exposition of ATC we follow Roger W. Gar-
rison’s Time and Money.  

According to ATC, it is useful to abandon the assumption of instantaneous production 
in favour of time-consuming production. Production process is presented as a sequence of 
stages of production (e.g. mining, refining, manufacturing, distributing and retailing). Output 
from one stage is used as an input in subsequent stage. Such a linear process is most readily 
imagined on the basis of goods-in-process.5  

Hayekian triangle (see Figure 1) first introduced by Hayek (1935) is the most popular 
representation of the main idea of ATC.  

 
F i g u r e   1 
The structure of production  

 
 
Source: Garrison, 2001. 
 

Hayekian triangle represents a process where original factors of production (i.e. labour 
and soil) are gradually transformed into consumer goods. Expenditures on consumption ap-
pear on vertical leg of the triangle. On the horizontal leg, time appears. Unfinished goods 
move from early stages to late stages, in each stage certain value being added by original factors 

                                                 
4 Mises (1912, 1966) was the first to use this approach to analyse business cycle. Friedrich A. von Hayek gave 
profound analysis of business cycles in Hayek  (1935) and elaborated the theory in Hayek (1941). Garrison 
(2001) attempts to integrate ATC into broad modern macroeconomic context. It has to be noted that economists 
of Austrian school of thought are in general reluctant to mathematical formalization of these ideas. The only 
paper known to us which attempts to formalize ATC is early Thompson (1936). 
5 However, as Hayek and Garrison acknowledge, “there are many feedback loops, multiple-purpose outputs, and 
other instances of nonlinearities. Further, each stage may also involve the use of durable – but depreciating – 
capital goods, relatively specific and relatively non-specific capital goods, and capital goods that are related 
with various degrees of substitutability and complementarity to the capital goods in other stages of production.” 

Garrison (2001), p. 25-26. 
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of production employed in given stage (most importantly labour). Capital goods produced by 
early stages called goods of high orders are turned into goods of low orders and finally into 
consumer goods. Alternatively, in Figure 1, height of the each stage’s ‘column’ represents 
value of current stock of capital goods of given order. 

We propose to formalize these ideas in a way similar to Jones-Manuelli model. Think 
about the economy depicted in Scheme 2. As opposed to Jones-Manuelli model, final product 
is produced gradually. Product ‘moves’ from one stage of production to another, workers in 
each stage add some value to the product and it takes exactly one period to do that. As in 
Jones-Manuelli model, final output can be used either for consumption or as an input in re-
search and development – successful research increases the number of stages of production. 

In Jones-Manuelli model labour L1 is used to produce capital good x1, labour L2 to 
produce capital good x2 and labour L3 to produce capital good x3. Then, x1, x2 and x3 are 
mixed with labour L0 to produce final product. In our model, labour L3 is used to produce 
capital good x3. In the next period, labour L2 is applied to x3 to turn it to x2. Similarly, in the 
next period, out of x2 and L1 capital good x1 is produced which is final product (in the follow-
ing text we use Y’s instead of x’s). There is no counterpart to L0 in our model.  
 
S c h e m e   2 
Time-consuming production 
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As for the general predictions of the model depicted in Scheme 2, we pick two issues 
from ATC: (1) impact of the time preference and (2) so called ‘secular growth’. 

 
F i g u r e   2 
Decrease in time preference  

  

Source: Garrison, 2001. 

Within the framework of Hayekian triangle, the time preference determines the slope 
of the hypotenuse. The slope moves in the same direction as the time preference (see Figure 
2). According to ATC, decrease in time preference allows more stages of production to be 
employed. In other words, number of stages of production in use depends not only on current 
technology but also on time preference. We will argue against this claim. On the other hand, 
our analysis will support the claim that decrease in time preference leads to tendency for more 
labour being employed in early stages of production. 
 
F i g u r e   3 
Secular growth  

 
 

Source: Garrison, 2001. 

So called secular growth is depicted in Figure 3. Garrison define secular growth as fol-
lows: “Secular growth occurs without having been provoked by policy or by technological 
advance or by a change in intertemporal preferences. Rather, the ongoing gross investment is 
sufficient for both capital maintenance and capital accumulation.”6 Thus, economic 
growth driven solely by the accumulation of capital goods is depicted as an outward shift 

                                                 
6 Garrison (2001), p. 54. 
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of the hypotenuse. As the economy grows, more stages of production are used and more con-
sumer goods are produced while the slope of the hypotenuse – in pure market economy de-
termined solely by the time preference – remains unchanged. In this paper we will argue 
against the possibility of this type of growth if Hayekian triangle is interpreted in terms 
goods-in-process.7  

In following section we propose formalization of production process based on series 
of CES-production functions. Furthermore, analogically to Jones-Manuelli model and Ro-
mer’s model, we assume that the number of stages of production cannot be expanded at will, 
but is the result of R&D. 

We will abstract from all market imperfections. However, even if production of pro-
ducer and consumer goods is conformable with assumption of perfect competition, investment 
R&D is not. As we do not want to enter the discussion of how our model economy behaves 
under different assumptions about the market structure, we solve the model as social-planner 
problem. Think about the model as describing behaviour of an economy under optimal policy. 

2. SET-UP OF THE MODEL 
 

Since we want the production to take exactly one period, it is convenient to set a 
model in discrete time. In period t, technology is such that there are Kt stages of production – 
there are goods of Kt different orders. To produce goods of i-th order (i being less than Kt), 
labour and goods of order i+1 are needed. However, only labour is needed to produce goods 
of order Kt. As one period is necessary to transform goods of i-th order into goods of order i-
1, goods of i-th order produced in period t enter into production of goods of order i-1 only in 
period t+1. We will refer to sector producing goods of order i as i-th order sector or, alterna-
tively, i-th stage of production. We assume diminishing marginal products of both factors of 
production and constant returns to scale. Production function for i-th order sector can be writ-
ten in the following form: 

( ) ( ) ( ) ( ) ( )
( )

( )

1, 1 , 1, 1 ,

2 2
, 1, 1 ,

1, 1 , ,

, ,

,  for ;  0;  0;  0;  0

,  for all 0

 for ;  ' 1

i t i t i t i ti t i t i t t Y L Y L

i t i t i t

i t i t t

Y f Y L i K f f f f

f Y L Y

Y L i K

λ λ λ λ

φ φ

+ − + −+ −

+ −

= < • > • > • < • <

= >

= = =

 

                                                 
7 In addition to the accumulation of capital goods, Garrison discuss impacts of changes in technology, resource 
availabilities and time preferences on economic growth. Changes in technology and resource availabilities are in 
general modelled in the same way as secular growth i.e. as outward shifts of the hypotenuse. Decrease in time 
preference, according to Garrison, allows for faster accumulation of capital goods, faster shifting of hypotenuse 
outward and thus for higher rate of economic growth. Unlike in neoclassical model, changes in time preference 
do not have ‘level effects’, on the contrary, conclusions of ATC are similar to those of AK-model of economic 
growth:  changes in time preference have ‘growth effects.’ 
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Yi – goods of i-th order; Li – labour allocated in the production of goods of i-th order; Kt – 
number of stages of production in period t 

We specify production function as CES-production function: 

( )
1

, 1, 1 ,

, ,

 for 

 for 
1 ;  1

1

i t i t i t t

i t i t t

Y Y L i K

Y L i K

α α α

σ α
α

+ −= + <

= =

≡ −∞ > >
−

  (1) 

α – coefficient; σ – elasticity of substitution 

In each stage, production is performed by perfectly competitive firms. Total endow-
ment of labour is given and is equal to 1. Since leisure (or labour) will not enter utility func-
tion, total labour supply is always equal to 1. 

One part of the total output is used for consumption; another part is used as an input in 
R&D. More input in R&D leads to higher probability of successful research, i.e. higher prob-
ability of inventing new stage of production. As inputs in R&D approaches infinity, probabil-
ity of success converges to maximum probability level B: 

( )1 1| 1

0 1; 0

tAR
t t tP K K R B e

B A

−
+ ⎡ ⎤= + = −⎣ ⎦

< ≤ >
 (2) 

Rt – expenditures on R&D; B – maximum probability; A – efficiency coefficient 

We do not specify R&D sector any further. In our model, optimal amount of resources 
will be allocated in R&D in every period. Think about R&D as run by government in the best 
possible way. Since in reality amount of resources devoted to R&D depends heavily on mar-
ket structure, behaviour of the model would slightly change once details about R&D are 
specified.8 However, it is not probable that general conclusions of the model will be changed.9 

                                                 
8 Several points can be made here: (1) R&D can not be run by perfectly competitive firms producing producer 
and consumer goods in production sector. Since profits in production sector are always zero, there is not enough 
incentive to perform R&D. (2) R&D can be run by competitive firms if we assume that in the case of successful 
research, firm may retain monopoly in newly invented stage of production (temporarily on permanently). In this 
case, behaviour of economy would depend on the market structure in every single stage of production. If we 
allow for the possibility that the monopoly in i-th order sector can be retained even after a sector of order i+1 is 
invented, the market structure in the economy as a whole would be a mixture of perfect competition, monopoly, 
monopsony and bilateral monopoly. In general, static underproduction will be the result. Impact on R&D expen-
ditures is hard to predict because of complicated structure of markets. (3) We may also assume that once new 
stage of production is invented, all firms expect successful inventor have to pay sunk costs to enter the sector. If 
these costs are less then monopoly profits in new stage of production, firms are motivated to enter the sector. 
This leads to limit pricing from the part of the inventor in new sector. Monopolistic competition in all sectors 
will lead to less final product. There will be a tendency for R&D expenditures to be less then optimal; however, 
actual R&D expenditures would be influenced by the extent of business-stealing effects (i.e. shifting of profits 
from early invented stages of production to newly invented stages of production). In the case of significant busi-
ness-stealing effects, overinvestment in R&D might be the result. We consider the third approach to be the most 
promising. 



 

 
 

12

We assume rational agents whose preferences are given by following utility function: 

( )

( ) ( )
0

ln
1 ; 0

1

t
t

t

t t

U u C

u C C

β

β ρ
ρ

∞

=

=

=

≡ >
+

∑
  (3) 

C – consumption; β – discount factor; ρ - coefficient of time preference; t – time 

3. SOLVING THE MODEL 
 
There are two distinct optimization problems to be solved in our model:  
The first one consists in finding an optimal allocation of labour between different 

stages of production, their number taken as given. As the probability of successful research is 
typically low, number of stages of production – Kt – can be treated as constant in the short run 
i.e. tK K= . This is why we refer to this problem as short-run optimization problem. Once the 

optimal allocation is achieved, economy is in the short-run equilibrium. If allocations of la-
bour between various sectors and volumes of producer goods of every order are such that it is 
optimal to keep them constant, economy is in the short-run steady state.  

The second problem consists in finding an optimal allocation of total final product be-
tween consumption and R&D. If higher number of stages of production enables to produce 
more output, it might be optimal to devote part of the final output to R&D. We refer to this 
problem as long-run optimization problem. As the economy is most of the time in short-run 
steady state characteristics of which are given only by the number of stages of production, 
ratio of total output devoted to R&D can be treated as determined solely by the number of 
stages of production and also taken as constant in the short-run. 

3.1.  Finding a short-run equilibrium 
 
In the short-run equilibrium, such allocations of total labour supply between different 

sectors are chosen that total utility given by (3) is maximized under the constraints given by pro-
duction function and total labour supply being equal to 1 and with respect to initial endowments 

                                                                                                                                                         
9 In the following text we will assume that a new stage of production is always stage of order K+1, i.e. if research 
is successful, new stage of production always appear at the beginning of production process. Since production 
always starts by extraction of raw materials and ends by retailing, it would be more reasonable to assume that 
new stages of production appears somewhere in the middle of production process. However, as we do not model 
transition from one state of technology (with K stages of production) to another state of technology (with K+1 
stages of production) and we focus mainly on steady states, this is only matter of notation. 
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of producer goods. It is convenient to think about initial endowments as of goods produced in 
the period  –1.  

Production function (1) can be rewritten as follows: 

( )

( )

( )

1

1, 2, 1 1,

1

2, 3, 1 2,

1

1, , 1 1,

, ,

...

t t t

t t t

K t K t K t

K t K t

Y Y L

Y Y L

Y Y L

Y L

α α α

α α α

α α α

−

−

− − −

= +

= +

= +

=

 

Inserting ,K tY  into production function of 1,K tY − , then inserting 1,K tY −  into production 

function of 2,K tY −  and so on simplifies production function: 

( )
1

1, 1, 2, 1 , 1...t t t K t KY L L Lα α α α
− − += + + +  (4) 

We will refer to the production function (4) as short-run production function.10  

                                                 
10 Now it is clear why our model can be understand as a modification of model of Jones and Manuelli (1997), 
section 6. Jones and Manuelli use production function that can be written as (we changed the notation of Jones 
and Manuelli to correspond to the one we use) 

( )1
1, 0

K

t tY DL x i di
μ

α αμ− ⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦⎣ ⎦∫  
where Yt denotes final product, D is a constant and L1,t denotes labour allocated to production of final goods. 
There is a continuum of intermediate goods x(i), [ ]0, ti K∈ , Kt being their number. Intermediate goods are pro-

duced according to production function ( ) ( )2,t tx i aL i= where a is a constant and L2,t(i) denotes amount of la-
bour used in production of intermediate good i. After inserting production function of intermediate goods into 
production function of final goods we obtain production function similar to (4):

  
( )1

1, 2,0

K

t t tY DL aL i di
μ

α αμ− ⎡ ⎤⎡ ⎤⎡ ⎤= ⎣ ⎦⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦∫   

We followed Jones and Manuelli in the assumption that final product can be used either for consumption or as an 
input in R&D sector: t t tY C R= + , Ct being consumption, Rt being expenditures on R&D. 
Number of intermediate goods evolves according to equation 1t t tK K BR+ = + . One unit of final product enables 
to discover B units of new intermediate goods. 
Jones and Manuelli use standard time-separable CRRA utility function  

1

0 1
t t

t

C
U

χ

β
χ

−∞

=

⎛ ⎞
= ⎜ ⎟−⎝ ⎠
∑  

where β is a discount factor and χ is a coefficient of relative risk aversion. 
Since total labour supply is fixed at 1L = , market clearing condition on labour market is given by 

( )1, 2,0
1tK

t tL L i di+ =∫ . 

Jones-Manuelli model yields symmetric solution of 1, 1tL μ= − and ( )2,t tL i Kμ= for all i. Long term behaviour 

of the model depends on a relationship between μ and ( )1α α− . 
Our model is a modification of a special case of Jones-Manuelli model where 1χ =

 
(i.e. utility is logarithmic) 

and 1μ = . We deviate from Jones and Manuelli in following manner: 
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Since our economy begins in period 0, it has no meaning to talk about allocation, say, 

4, 3tL −  for 1t = . However, as we already mentioned, it is useful to think about initial endow-

ments of producer goods of various orders as if produced in period –1. Then, by the same 

logic as when deriving (4), a term ( )
1

2, 1 , 1...t K t KL Lα α α
− − ++ +  for 0t =  is equal to initial en-

dowment of producer goods of order 2, that is 2, 1Y − . The sum ( )2, 1 , 1...t K t KL Lα α
− − ++ + is equal 

to ( )2, 1
a

Y − . Analogically, ( )3, 1 , 2...t K t KL Lα α
− − ++ + is equal to initial endowment of producer 

goods of order 3 to the power of α, that is ( )3, 1
a

Y − . 

Total final output in period t is given by allocation of labour in the first-order sector in 
period t, in the second-order sector in period t–1 and so on. 

As the total labour supply is equal to 1, market clearing condition on labour market 
takes the simple form:  

,
1

1
K

t i t
i

L L
=

= =∑  (5) 

Lagrangian of this problem is: 

( ) ( ), 1, ,
0 0 1 0 0 1

ln 1 ln 1
K K

t t
t t j t t t j t

t t j t t j
X C w L Y w Lβ β ϕ

∞ ∞ ∞ ∞

= = = = = =

⎛ ⎞ ⎛ ⎞
= − − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑   

φ – rate of consumption – constant in the short-run, w – Lagrange multiplier 

However, as the ratio of the consumption to the total final output is constant in the 
short run, it is sufficient to solve11: 

( ) ( )1, 1, 2, ,
0 0

ln 1 ...t
t t t t K t

t t

V Y w L L Lβ
∞ ∞

= =

= − − − − −∑ ∑  (6) 

Inserting short-run production function (4) into Lagrangian (6) yields: 

( ) ( )
1

1, 2, 1 , 1 1, 2, ,
0 0

ln ... 1 ...t
t t K t K t t t K t

t t
V L L L w L L Lα α α αβ

∞ ∞

− − +
= =

⎡ ⎤
= + + + − − − − −⎢ ⎥

⎣ ⎦
∑ ∑  (7) 

                                                                                                                                                         
• Variable Kt (in Jones-Manuelli model understood as a number of intermediate goods, in our model inter-

preted as number of stages of production) evolves according to different function. 
• Instead of a continuum of intermediate goods we use set of stages of production. 
• Unlike Jones and Manuelli, we assume that labour allocated in different sectors (in Jones-Manuelli context 

in the production of different intermediate goods, in our model in different stages of production) enters pro-
duction gradually. Instead of instantaneous production we assume time-consuming production. 

The third modification leads to solution such that in the long run, economic growth will not occur irrespective of 
values of α. On the other hand, in Jones-Manuelli model, if ( )1α α− is equal to μ (what in the case of 1μ =

 amounts to the condition ½α = ), economy endogenously grows by a constant rate. Furthermore, if 
( )1α α μ− >

 
(in the case of 1μ =

 
this condition reduces to ½α > ) there is an explosive growth. 

11 This fact follows directly from the homotheticity of the utility function. 
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First order conditions with respect to labour can be expressed in the following way: 

1 1
,

1, 1 2, 2 ,

1
...

t i
i t t

t i t i K t i K

L w
L L L

α
α α αβ + − −

+ − + − + −

=
+ + +

 (8) 

First order conditions are easy to interpret. Discounted marginal utility from marginal 
final product of labour in every sector has to be equal. In other words, discounted contribution 
of additional unit of labour in every sector to utility obtained from goods of order 1 has to be 
the same (as contribution to total final product of labour in i-th sector yields utility only after 
i-1 periods, it has to be i-1 times discounted.). 

It follows from (8) that it is always efficient to use all stages of production that are 
available under current technology. Whatever the value of Lagrange multiplier wt is, left-hand 
side of equation (8) is well-defined only if , 0i tL > . In other words, as allocation of labour in 

any sector approaches zero, its marginal final product approaches infinity; therefore, it is op-
timal to employ labour in all sectors. If R&D is modelled as a separate sector, economic 
growth without progress in technology could not look like in Figure 3 – secular growth is  not 
possible. On the other hand, with broader notion of structure of production, an investment in 
R&D is actually an investment in very high-order good. Economic growth can be thus imag-
ined as in Figure 3, but growth of this kind does not satisfy Garrison’s definition. We stress, 
that this conclusion does not hinge on the assumption 10

lim
i

iL
dY dL

→
= ∞ . If we relax this as-

sumption and allow marginal final product of labour to approach finite positive value as allo-
cation of labour in given sector approaches zero, it might be optimal not to allocate labour in 
early stages at all (irrespective of whether the economy is in short-run steady state or not). To 
see this, consider a general case of short run production function: 

( )
( ) ( )

, 1 , 1

1, 2, 1 , 1

2

, ,...,

0; 0
i t i i t i

t t t K t K

L L

Y L L L

− + − +

− − += Φ

Φ • > Φ • <
 

Assume that if no labour is allocated in sector i, marginal final product of labour in 
that sector does not approach infinity, but is finite and cannot be higher than some value δH. If 
all labour is allocated in sector i and no labour is allocated elsewhere, marginal final product 
of labour in i-th sector is minimal and it is equal to δL. 

To maximize utility, following conditions would have to be satisfied: 

1

1, 2, 1 , 1

... K

t t K t K

d d d
dL dL dL

β β −

− − +

Φ Φ Φ
= = =  

It is straightforward to show that number of stages of production in use cannot exceed 

( )ln ln ln lnH Lβ δ δ β− + . In other words, there is an upper limit on number of stages of pro-

duction that it is optimal to employ. In the long run, secular growth as depicted in Figure 3 is 
not possible. 
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Now use the fact, that denominator of left-hand side of (8) is equal to ( )1, 1t iY
α

+ −  to see 

that first order conditions (8) can be expressed as: 

( ) ( )

1 1 1
1, 1 1, 2 1, 1

1, 2, 3, ,2 1
1, 1, 1,

1
1

1 1 1...

1 1

t t t K
t t t K tK

t t t

Y Y Y
L L L L

m Y m Y m Y

m

α α α
α α α

σ
αρ ρ

− − −
+ + + −

−

−
−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

≡ + = +

 (9) 

m – rationing parameter 
Rationing parameter m is always between zero and unity. From now on we will be in-

terested only in the short-run steady state where , , 1i t i tL L +=  and , , 1i t i tY Y +=  for all i’s12 and t’s. 

Set of conditions (9) reduces to: 

1 2 32 1

1 1 1... KKL L L L
m m m −= = = =  (10) 

Combining with market clearing condition on labour market (5) yields the following 
expression for allocation of labour between different sectors: 

1
1

1

1
1

1
K

i

i

i
i

L
m

L L m

−

=

−

=

=

∑  (11) 

Several important conclusions can be made from equations (10) and (11): 

1. As elasticity of substitution approaches zero (α approaches –∞) and short-run production 
function approaches Leontief production function, m converges to 1. In this case labour is 
distributed uniformly between sectors irrespective of time preference 
( 1 2 ... 1KL L L K= = = = ). Intuitively, if technology is Leontief, there is no freedom in al-

location of labour between sectors. As we explain later, we do not consider this case to be 
relevant. 

2. As elasticity of substitution approaches ∞ (α approaches 1), production function becomes 
linear. In this case first order conditions are no longer applicable and corner solution oc-
curs with 1 1L =  and 2 3 ... 0KL L L= = = = . If there is perfect substitution between labour 

allocated in sector of order 1 and all other sectors, it is useless to allocate labour in sectors 

                                                 
12 The transition to steady-state is fully governed by set of equations (8). Suppose that economy begins with no 
stock of producer goods of any order. Final product in the first period is thus less then in steady-state. As econ-

omy approaches steady state, final product grows. Therefore, the terms ( )1
1, 2 1,t tY Y

α
α−

+  in (9) are always greater 
then unity. It follows that during the transition, relatively more labour is allocated in low-order sectors and rela-
tively less labour is allocated in high-order sectors. 
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2 to K and wait until this labour yields utility. Instead, social planner should allocate all 
labour in sector of order 1 and utility is obtained instantaneously. 
3. If technology is not Leontief and economic agents are not perfectly patient ( 0ρ > ), 

more workers are employed in late stages of production (sectors of lower orders) than 
in early stages of production (sectors of high orders).  

4. If technology is not Leontief, fraction of labour allocated in sector of order 1 (and sec-
tors of low orders in general) is increasing in time preference ρ . Our formal analysis 

thus confirms ATC (see Figure 2). With higher time preference, agents are less patient 
to wait for labour in high-order sectors to yield utility and therefore allocate labour in 
low-order sectors. Importantly, if agents are perfectly patient, i.e. 0ρ = , labour is dis-

tributed uniformly across sectors: 1 2 ... 1KL L L K= = = = . The logic behind is simple. 

In the absence of discounting, marginal product of labour in every sector is given by 
the same expression (8) (where 1β = ). Therefore, to make marginal products equal, 

amount of labour allocated in every sector has to be the same. In this case, short-run 
production function reduces to: 

1

1Y K
α
α
−

=  (12) 

Inserting (11) into production function (4) enables us to express total final output as a 
function of number of stages of production, coefficient of elasticity of substitution and coeffi-
cient of time preference: 

( )

1

1
1

1 1

1

1 K
i

K
i i

i

Y m
m

αα −

− =

=

⎡ ⎤
= ⎢ ⎥⎣ ⎦

∑
∑

 

After the summation of geometric series ( )1

1

K
i

i

mα −

=
∑  and ( )1

1

K
i

i

mα −

=
∑  we obtain: 

( )
1

1
1 1

1 1

K

K

m mY g K
m m

α α

α

⎛ ⎞− −
= = ⎜ ⎟− −⎝ ⎠

 (13) 

We will refer to this function as long-run production function. Long-run production 
function is schematically depicted in Figure 4, its first derivative – marginal final product of 
additional stage of production – is depicted in Figure 5. In the rest of this section, we focus on 
the different characteristics of long-run production function that will be of great importance in 
analysis of long-run behaviour of the model. 

First observe that marginal final product of additional production stage is given by:
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( ) ( )

( )
( )

1

1
1

11 ln
'

1 1 11

K K K

K K K

mm mdY m mg K
dK m m mm

α α α

α
α α

⎡ ⎤ ⎡ ⎤
−− ⎡ ⎤⎢ ⎥ ⎢ ⎥= = −⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (14) 

As the first term is always negative and the second term is always positive, sign of the 

marginal product depends on the sign of the third term. If 0 1α< < , value of ( )1K Km m−  is 

lower than value of ( )1K aKm mα − (both being positive) and marginal product is positive. If 

0α < , value of ( )1K aKm mα −  is positive while ( )1K Km m −  is negative, marginal product is 

therefore negative. 
 

 

If elasticity of substitution σ  is higher than unity ( 0α > ), additional production stage 
enables more efficient allocation of labour and more total product.  On the other hand, if σ  is 
less than one ( 0α < ) higher number of stages of production leads to less product. This can be 
easily understood in the case of elasticity of substitution approaching zero (α approaching       

–∞). Short-run production function becomes Leontief, i.e. ( )1 1 2min , ,..., KY L L L= . To maxi-

mize product (maximum product in this case coincides with maximum utility), labour is dis-
tributed uniformly across sectors: 1 2 ... 1KL L L K Y= = = = = . More sectors means more 

complicated but not more efficient technology and Austrian economic growth based on 
lengthening of production chain is not possible.  

To analyze an extreme Cobb-Douglas case 0α = , observe that in the steady state, if 
0α = , production function (4) can be expressed as: 

K 

g(K) 

α > ½ 

α < ½ 

α = ½ 

K 

g’(K) 
α > ½  

α < ½ 

α = ½ 

Upper bound:  
(1-m)/[(1-m α)1/α] 

¾ (lnm)3 

F i g u r e   4 
Long-run production function  

F i g u r e   5 
Marginal final product  
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1 1 1 1 2 1 1
2

1 1 2 1
1

1

1... ...
K K

K K K K K K
K K

i

i

Y L L L L m m m m
m

− −

−

=

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠ ∑
 

Once we sum up 1

1

K
i

i

m −

=
∑ , Cobb-Douglas production yields long-run production func-

tion of the following form: 

1
2

1
1

1

K

K

mY m
m

−−
=

−
 (15) 

Production function (15) is similar to (13) ( ( ) ( )
1

1 1Km mα α α⎡ ⎤− −⎣ ⎦  in (13) is replaced 

by 
1

2
K

m
−

 in (15)). First derivative of (15) with respect to K is also similar to (14) (once again 

( ) ( )
1

1 1Km mα α α⎡ ⎤− −⎣ ⎦  is replaced by 
1

2
K

m
−

): 

( )
1

2
1 11 ln

1 1 2

K
K

K K

dY m mm m
dK m m

−⎡ ⎤
⎡ ⎤⎢ ⎥= − +⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥− −⎣ ⎦⎢ ⎥⎣ ⎦

 

It is easy to see that the value of the first derivative is always negative (the first term is 
always negative, the second and the third term are always positive).13 

If Austrian stages of production are to be formalized as a sequence of CES-production 
functions, assumption 0α >  which implies elasticity of substitution greater than unity is nec-
essary. Therefore, from now on we focus only on the case 0α > . 

Character of the second derivative of the total product with respect to the number of 
stages of production also depends on the parameter α. 

• If elasticity of substitution is greater or equal to 2 ( ½α ≥ ) second derivative is always 
negative. For K close to zero, marginal final product of additional stage of production 

                                                 
13 Numerical example illustrates why with Cobb-Douglas technology final product falls with increasing number 
of stages of production. Assume that there is only one stage of production. Production function reduces to 

1 1Y L= . Allocation of labour in sector of order 1 is 1 1L = ; product is equal to 1 1 1Y L= = . Now increase the 

number of stages of production to 2. Production function is 
1 1
2 2

1 1 2Y L L= , under the constraint 1 2 1L L+ = the 

highest attainable product is 
1 1
2 2

1
1 1 1
2 2 2

Y ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. Analogically if the number of stages of production is equal to 

3, the highest attainable product is 
1 1 1
3 3 3

1
1 1 1 1
3 3 3 3

Y ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

.  

Actually, in the case of perfect patience 0ρ =  where labour is distributed uniformly across sectors 

1 2 ... 1KL L L K Y= = = = = , Cobb-Douglas production reduces to strictly decreasing function 1 1Y K= . 
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is very high, ( )
0

lim '
K

g K
→

= ∞ . As K grows, ( )'g K  falls and gradually approaches zero, 

( )
0

lim ' 0
K

g K
→

= .  

• If σ  is less than 2 ( ½α < ) second derivative is positive for low values of K, however, 
with growing K it becomes negative. For low values of K, marginal final product of 

additional stage of production is very low, ( )
0

lim ' 0
K

g K
→

= . With increase in K we at 

first observe increasing marginal final product, after some point marginal final product 

begin to decline and gradually approach zero, ( )
0

lim ' 0
K

g K
→

= . 

• If σ  is equal to 2 ( ½α = ) second derivative is always negative, however, as K ap-

proaches zero, ( )'g K  does not approach infinity (as in the case ½α ≥ ), but positive 

constant, ( ) ( )( )3

0
lim ' 3 4 ln
K

g K m
→

= . As K grows to infinity, ( )'g K  approaches zero, 

( )
0

lim ' 0
K

g K
→

= . 

Underlying mechanics is easy to understand in extreme case of perfect patience, where 
0ρ =  and 1m = . As already mentioned, in this case, short-run production function is reduces 

to 
1

1Y K
α
α
−

= . For ½α > , exponent of 
1

K
α
α
−

 is lower than unity, which means that diminishing 

marginal returns to number of stages of production applies. If ½α < , increasing marginal 
returns are observed – the second derivative is positive. If elasticity of substitution is equal to 
2 ( ½α = ), production exhibits constant marginal returns. However, if 0ρ >  and 1m <  la-

bour is not distributed uniformly across sectors. The higher the stage of production, the less 
labour is allocated in the sector because of the growing delay between exerting labour and 
obtaining utility. Deviating more and more from 1 2 ... 1KL L L K= = = =  creates tendency for 

diminishing marginal returns. In the case of ½α > , already existing decreasing of marginal 
product is emphasized. If ½α < , after some critical number of stages of production, increas-
ing marginal returns are completely offset by deviating from uniform distribution of labour 
and diminishing marginal product applies. If ½α = , constant marginal returns never have 
chance to be observed, marginal product is always decreasing. 

Finally, there is one more peculiarity about the long-run production function (12). As 
the number of stages of production grows to infinity, product does not grow without bound-
ary. 

( )

1

1 1
1 1 1lim lim

1 1 1

K

KK K

m m mY
m m m

α α

α
α α

→∞ →∞

⎛ ⎞− − −
= =⎜ ⎟− −⎝ ⎠ −

 (16) 

When the number of stages of production is high, very little labour is allocated in the 
highest stages of production because agents are not willing to wait so much for the labour 
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there allocated to yield utility. Inventing new stage of production has thus almost no impact 
on total product because very little labour is allocated in an additional stage. Impatience thus 
constitutes upper boundary on total product. As agents become perfectly patient (time prefer-
ence ρ  approaches 0, rationing parameter m approaches 1) upper boundary cease to exist. 

( )
1 1, 1 1

1lim lim
1

K m m

mY
mα α

− −→∞ → →

−
= =∞

−
 

3.2. Finding a long-run equilibrium 
 

Expression (16) has decisive impact on the long-run implications of the model. Be-
cause of the impatience of economic agents, growing number of stages of production cannot 
be the source of endogenous economic growth. Even if the number of stages of production 
grew exogenously, long-run growth would have not been possible. 

Furthermore, it will be shown that economic growth will eventually stop after reach-
ing certain number of stages of production, or in other words, there is a long-run steady state 
where number of stages of production K is kept constant. 

To simplify our analysis, we assume that K can take also non-integer values. From the 
long-run point of view, economy is always in short-run steady state and total product is given 

by the long-run production function ( )g K  (13). Total output is divided between consumption 

and expenditures on R&D. In the long run, next-period number of stages of production de-
pends on expenditures on R&D. Since we have already relaxed our assumption that K can 
take only integer values, we do not assume that next-period K will be equal to K+1 with prob-
ability P given by (2) and to K with probability 1–P , instead, we assume that next-period K is 
equal to K P+ . This simplification is made mainly for analytical reasons. Furthermore, in the 
long-run, we set up the model in the continuous time. Dynamics of K is thus given by 

( ) ( ){ }1 LA g K t C tK B e ⎡ ⎤− −⎡ ⎤⎣ ⎦⎣ ⎦= −&  (17) 

AL – long-run efficiency coefficient 

where ( ) ( ) ( )R t g K t C t= −⎡ ⎤⎣ ⎦ . Since expenditures on R&D cannot be negative (in 

other words, consumption cannot exceed total product), inequality ( ) ( )C t g K t≤ ⎡ ⎤⎣ ⎦  must 

hold. 
Several simplifying assumptions allow us to formulate simple optimal control problem. 

Combining function (17) with utility function (3) yields following present-value Hamiltonian: 

( ) ( ) ( )( ) ( ){ }ln 1 LL
A g K t C ttJ e C t t B eρ λ ⎡ ⎤− −− ⎣ ⎦= + −⎡ ⎤⎣ ⎦  (18) 

with constraint 
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( ) ( )C t g K t≤ ⎡ ⎤⎣ ⎦  

a transversality condition:  

( ) ( )lim 0
t

t K tλ
→∞

=  (19) 

ρL – long-run time preference; λ – costate variable 
It is important to note that one short- run period (say, 1 year) is not equal to one period 

in the long-run, as in the long-run economy is always in short-run steady state. If, for instance, 
it takes 10 years for economy to approach close enough to short-run steady state, one long-run 
period has to be identified as at least 10 years. Therefore, it is not possible to use same value 
ρ  as time preference in the short and in the long run. We use ρL to denote long-run time pref-

erence, Lρ  being higher than ρ. The same applies for efficiency coefficient A in R&D produc-

tion function. In the long run, we use AL instead of A, AL being higher than A. We emphasise 
in advance that the characteristics of a steady state depend on the fraction L LAρ . Because of 

that, multiplication of ρ and A by the same constant has no effect on the steady state.  Fur-
thermore, assumption of one long-run period being equal to, say, 10 short-run periods implies 
that in one long-run period agents consume ten times more than in one short-run period. 
However, it is clear that Hamiltonian 

( ) ( ) ( )( ) ( ){ }' ln 10 1 LL
A g K t C ttJ e C t t B eρ λ ⎡ ⎤− −− ⎣ ⎦= × + −⎡ ⎤⎣ ⎦  

yields the same solutions as Hamiltonian (18). 
To solve the optimal control problem stated by (18) and (19) proceed as follows: cal-

culate the first order condition with respect to control variable C 

( )1 L Lt A g K C

L

e
A BC

ρλ − + −⎡ ⎤⎣ ⎦=  (20) 

and the first order condition with respect to state variable K:  

( ) ( )' LA g K C
Lg K A Beλ

λ
− −⎡ ⎤⎣ ⎦= −

&
 (21) 

Now take the derivative of (20) with respect to time and divide by (20) to yield an ex-
pression for growth rate of costate variable λ: 

( )'L L L
C A g K K A C
C

λ ρ
λ
= − − + −

& &
&&  (22) 

Use the equality of (21) and (22) and substitute for dK dt  from (17). After some ma-

nipulation, expression for dynamics of C can be obtained: 

( )'
1L L

L

CC A Bg K
A C

ρ= −⎡ ⎤⎣ ⎦ +
&  (23) 
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This expression, together with (17) and transversality condition (19) describes dynam-
ics of the system. Values of K and C in steady state where 0dK dt =  and 0dC dt =  can be 
easily calculated by equating (18) and (23) to zero: 

( )* *C g K=  (24) 

For consumption to be constant following equation must hold: 

( )' * 0L LA Bg K ρ− = . 

As L LA Aρ ρ= , we can write: 

( )' * 0ABg K ρ− = . (25) 

Alternatively: 

1* 'K g
AB
ρ− ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (26) 

where 1'g −  is the inverse of the first derivative of the long-run production function 

(13). However, 1'g −  exists only if 'g  is strictly decreasing, that is ½α ≥ . Phase diagram for 
½α >  is depicted in Figure 6. There is one steady state. 

 
F i g u r e   6      F i g u r e   7  
One steady state; α > ½   Two steady states; a < 1/2 

 
Shaded area – set of feasible controls 

Let us now examine three different possible cases. 

 

K* 
dC/dt = 0 

g’(K*) = ρ/AB 

K 

C 

C=g(K) 

g’(K*1) = ρ/AB 

K 

C 

C=g(K) 

g’(K*1) = ρ/AB 

K2* 
dC/dt = 0 

g’(K*2) = ρ/AB 

K1* 
dC/dt = 0 

g’(K*1) = ρ/AB 

g’(K*2) = ρ/AB 

Upper bound:  
(1-m)/[(1-m α)1/α] 

Upper bound:  
(1-m)/[(1-mα)1/α] 

Inflexion  
point 
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Case A: α > ½  

This is the simplest case. Since ( )
0

lim '
K

g K
→

= ∞ ,  ( )lim ' 0
K

g K
→∞

=  and ( )'g K  is con-

tinuous and strictly decreasing, there is always exactly one steady-state. Phase diagram sug-
gests that system is saddle-path stable. 14 If initial value of K is lower than K*, economic 
agents choose such a value of consumption that the economy finds itself on stable arm and 
gradually approaches steady state. If initial value of K(0) is higher than K*, economic agents 
would like to choose consumption higher then total product g(K) and ‘eat’ some K, however, 

as K represents technology, this is not possible. In other words, constraint ( ) ( )C t g K t≤ ⎡ ⎤⎣ ⎦  is 

binding (in Figure 6 and 7, set of feasible controls is represented by shaded area) and corner 
solution occurs with ( )C g K= . 

Case B: α < 1/2  

In this case, because of the convex-concave character of function g(K), if the product 
of two coefficients of efficiency of R&D sector AB is sufficiently high, equation (25) holds 
for two values of K and there are two steady states – see Figure 7. Steady state 

where ( )'' * 0g K <  is saddle-path stable (higher value of K*), on the other hand, steady state 

where ( )'' * 0g K >  is unstable (lower value of K*).15 

However, as AB declines, value of the ratio ABρ  increases and two steady states ap-

proach each other. If ABρ  is equal to the value of the first derivative of g at the point where 

g is the steepest, i.e. at inflexion point, there is only one steady state. From the left-hand side, 
system is unstable, from the right-hand side, system is saddle-path stable.16 

If AB is even lower, there is no inner solution for the long-run problem and corner solution 

occurs, where ( )C g K=  in every period. 

 

                                                 
14 This can be verified by examination of Jacobian matrix Z made of partial derivatives of (18) and (23) with 
respect to C and K at steady states. 

( )* '' *
0

1 *
L

L

L
L

C A Bg K
A C

A
B
ρ

⎛ ⎞
⎜ ⎟

+⎜ ⎟=
⎜ ⎟
−⎜ ⎟
⎝ ⎠

Z  

In the case of ( )'' * 0g K < , both eigenvalues of Z are real, one being positive, one being negative – system is 
saddle-path stable. 
15 If ( )'' * 0g K > , both eigenvalues of Z are either real and positive or complex with positive real parts – system 

is unstable. If ( )'' * 0g K < , both eigenvalues of Z are real, one being positive, one being negative – system is 
saddle-path stable. 
16 In the case of  If ( )'' * 0g K = , one eigenvalue is real and positive, another is equal to zero. Steady-state is 
knot-saddle point. 
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Case C: α = 1/2  
Case of ½α =  is similar to the case ½α > . A difference is in the fact, that value of 

the first derivative of function g at K=0 is finite and is equal to ( ) ( )( )3

0
lim ' 3 4 ln
K

g K m
→

= . 

Because of that, if ABρ  is higher then ( )
0

lim '
K

g K
→

 there is again no solution to the long-run 

problem. 
Analysis of long-run problem suggests that if the efficiency of R&D sector is too low, 

there might be no equilibrium because marginal product of additional stage of production is 
never high enough to encourage costly investment in R&D. Because of this, it is desirable to 
calculate minimal level of R&D efficiency that ensures the existence of equilibrium. This 
amounts to find an inflexion point of the long-run production function g for various α in in-

terval (0,½  and ρ (ρ influences value of m) and to calculate the slope of a tangent to g at this 

points. In other words, we need to find maximal value of the first derivative of the function g 
for various α and ρ. Denote this value 'MAXg . Minimal value of product AB which ensures the 

existence of at least one equilibrium is given by 'MAXgρ . If AB is higher than 'MAXgρ , there 

are two equilibriums. Even if it is not possible to solve this problem analytically, maximal 
value of 'g  can be found numerically. We report critical values of AB for various α and ρ in  

 
T a b l e   1 
Minimal values of AB ensuring existence of equilibrium for α ≤ ½  

 ρ1 = 0,02 ρ2 = 0,04 ρ3 = 0,06 ρ4 = 0,08 ρ5 = 0,1
α1 = 0,05 5,58E-57 2,45E-51 4,58E-48 9,13E-46 5,36E-44
α2 = 0,15 5,96E-14 1,26E-12 1,19E-11 5,84E-11 1,98E-10
α3 = 0,25 5,2E-07 4,08E-06 1,35E-05 3,14E-05 6,03E-05
α4 = 0,35 0,000335 0,001202 0,002531 0,004282 0,006428
α5 = 0,45 0,008146 0,018963 0,031055 0,049348 0,057715
α6 = 0,49 0,017569 0,036129 0,055068 0,074247 0,093598
α7 = 0,50 0,019999 0,039995 0,059983 0,079961 0,099924

 

We observe that requirements on R&D efficiency increase with α. The lower α, the 
faster marginal product of additional stage of production increases. With lower α, at the mo-
ment when tendency for decreasing marginal product prevails, i.e. at inflexion point, marginal 
product is higher. As marginal product is higher, lower efficiency of R&D is needed to ensure 
profitable investment in R&D. Furthermore, requirements on R&D efficiency increase with ρ. 

If economic agents are less patient, higher efficiency of R&D is needed to make them 
postpone current consumption and invest in R&D. 

In this respect our analysis yields results very different from the results of Jones and 
Manuelli. Even if the technology allows for increasing returns to scale ( ½α < ), not only there 
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is no explosive growth, but there might be no inner solution at all. If efficiency of R&D is too 
low, it might be always optimal to consume entire final product. 

At this point we focus on economic interpretation of steady-state conditions. Assume 
that R&D efficiency is high enough to ensure existence of inner solution. The condition (23) 
is straightforward: number of stages of production is constant only if no resources are in-
vested in R&D, i.e. whole output is consumed. To interpret the condition for constant con-

sumption (25), observe first that (24) implies ( )' * 1L LA Bg K ρ = . In equilibrium, economic 

agents cannot by definition increase their utility by consuming slightly less today, investing 
amount saved in R&D and then consume more in all future periods when the number of 
stages of production is higher (alternatively, it is not possible to increase utility by consuming 
slightly more). Now imagine that agents decrease their consumption by 1 unit. Current utility 

therefore decreases by ( )' *u C . By investing one more unit of total product in R&D, next-

period number of stages of production increase by a value given by derivative of (17) with 

respect to R, that is *LA R
LA Be−  or ( )* *LA g K C

LA Be− −⎡ ⎤⎣ ⎦ . This expression gives marginal product of 

R&D expenditures in terms of the number of stages of production. As one more stage of pro-

duction enables to increase total product by ( )' *g K , increase in the number of stages of pro-

duction by ( )* *LA g K C
LA Be− −⎡ ⎤⎣ ⎦  enables to increase total product by ( ) ( )* *' * LA g K C

Lg K A Be− −⎡ ⎤⎣ ⎦ . 

Total utility in all following periods thus increases by ( ) ( ) ( )* *' * ' * LA g K C
Lu C g K A Be− −⎡ ⎤⎣ ⎦ . In 

equilibrium, ‘current value’ of additional utility ( ) ( ) ( )* *' * ' * LA g K C
Lu C g K A Be− −⎡ ⎤⎣ ⎦  has to be 

equal to forgone utility given by ( )' *u C  which yields the condition: 

( ) ( ) ( ) ( )* *' * ' *
' *

LA g K C
L

L

u C g K A Be
u C

ρ

− −⎡ ⎤⎣ ⎦

=  

Now use the fact that in steady state all output is consumed to see: 

( )' *
1L

L

A Bg K
ρ

=  

In addition to the fact that impatient agents are willing to allocate only very little la-
bour in very high-order sectors which makes additional sectors almost unproductive, there is a 
second upper limit on final product. There is a value of the number of stages of production 
when additional stage of production enables to increase final product only by so little that 
discounted additional utility which is thus obtained does not compensate for the costs of in-
venting it. The discount factor is too high, agents are too impatient. 
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Observe that the number of stages of production and the level of output grows as rate 
of time preference decreases.17 

Level of output is also increasing in efficiency of R&D expressed by parameters A and 
B. With higher efficiency of R&D, it is less costly to invent new stage of production; it is 
therefore optimal to keep investing in R&D for a longer time. 

 

4.  POTENTIAL SOURCES OF ENDOGENOUS GROWTH  
 

We have shown that under plausible assumptions, economic growth based solely on 
accumulation of producer goods and growing number of stages of production might not be 
possible. In other words, once time-consuming production is introduced into standard model 
of technological change, endogenous growth cease to exist. In this section we propose several 
modifications of the model that will make endogenous growth possible. We briefly mention 
human capital and labour-augmenting technological progress and we investigate possible ef-
fects of production-accelerating technological progress. 
 
4.1. Human capital 

 
As firstly shown by Lucas (1988) and by many others later on, human capital might be 

one of the most important sources of the economic growth. It is possible to incorporate human 
capital in our model in the same way as Lucas incorporates human capital in neoclassical 
model of economic growth. 

We will modify set of production functions (1) in the following way: assume, that 
volume of capital goods of i-th order ,i tY  is function of volume of capital goods of order i+1 

(i.e. 1, 1i tY + − ) and human capital ,i tH  employed in i-th sector: 

( )
1

, 1, 1 ,

, ,

 for 

 for 
i t i t i t

i t i t

Y Y H i K

Y H i K

α α α
+ −= + <

= =
 

Short run production function (4) changes into: 

( )
1

1, 1, 2, 1 , 1...
tt t t K t KY H H Hα α α α

− − += + + +   (27) 

In the short run, stock of human capital is constant and is equal to H. Economic agents 
devote fraction v of human capital to production of consumer (and producer) goods and re-

maining ( )1 v−  to further accumulation of human capital (actually, it would be more promis-

ing to assume that part of human capital is allocated in R&D sector as well; for simplicity, we 
                                                 
17 However, contrary to ATC, time preference of economic agents does not influence long-run rate of growth 
which is equal to zero. In other words, similarly to neoclassical model, changes in time preference have level 
effects only and no growth effects. 
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abstract from this possibility at this point). Define ,i th  as ratio of human capital employed in 

sector i (i.e. ,i tH ) to the total stock of human capital employed in production sector vH , that 

is , ,i t i th H vH= . Production function (27) can be written as:  

( )
1

1, 1, 2, 1 , 1...t t t K t KY vH h h hα α α α
− − += + + +  

Optimal values of ,i th  will be chosen by the same way as values of ,i tL . Long-run pro-

duction function (13) now takes form: 

1

1
1 1

1 1

K

K

m mY vH
m m

α α

α

⎛ ⎞− −
= ⎜ ⎟− −⎝ ⎠

 (28) 

We may assume that in the long run, accumulation of human capital is governed by 
familiar equation 

 ( ) ( ) ( )1H t H t D v t= −⎡ ⎤⎣ ⎦&  

where D is maximum rate of human-capital accumulation. 
Since the long-run production function (28) exhibits constant returns to produced in-

put H (human capital) it follows that long-run endogenous growth with solution similar to 
those of Lucas (1988) is possible. In Figures 6 and 7, growing stock of human capital will be 

accompanied by steepening of the loci ( )C g K= . Steady states will therefore ‘shift’ to the 

right and the number of stages of production will rise with growing stock of human capital. 
Observe that it would be a mistake to consider increasing number of stages of produc-

tion to be a source of long-run economic growth. The only true source of long-run growth is 
growing stock of human capital. This is what makes investment in increasing number of 
stages of production effective. 18 Implications of this on Austrian views on economic growth 
are extremely important. It might be the case, that lengthening of horizontal leg and vertical 
leg of Hayekian triangle (see Figure 3) are to the great extent independent from each other 
and are caused by the third factor – for instance by growing stock human capital. Of course, 
as in the case of R&D, we can include investment in human capital inside the Hayekian trian-
gle. Then, investment in human capital would have to be understood as investment in pro-
ducer goods of very high order and to invest in human capital would actually mean to expand 
horizontal leg of the triangle. The term ‘capital’ in ‘Austrian theory of capital’ would have to 
be understood in its broader sense including human capital. 

                                                 
18 We would make precisely the same mistake if we considered investment in physical capital to be the source of 
long-run growth in the neoclassical model of economic growth. The only true source of the growth in neoclassi-
cal model is exogenous technological progress. 
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4.2. Labour-augmenting technological progress 
 
Alternatively, assume that there is labour-augmenting technological progress, the level 

of technology being constant in the short run. The production function (4) is modified in the 
following manner: 

( )
1

, 1, 1 ,

, ,

 for 

 for 
i t i t i t

i t i t

Y Y TL i K

Y TL i K

α α α
+ −

⎡ ⎤= + <⎣ ⎦
= =

 

T – coefficient of technology  
Modification of long-run production function is straightforward: 

1

1
1 1

1 1

K

K

m mY T
m m

α α

α

⎛ ⎞− −
= ⎜ ⎟− −⎝ ⎠

 (29) 

Due to constant returns to the level of technology T, an endogenous growth will be 
possible. Detailed behaviour of an economy would depend on the way technological progress 
happens. 

4.3. Production-accelerating technological progress 
 
Human capital and labour-augmenting technological progress are sources of endoge-

nous growth somewhat unrelated to ATC. However, it seems ATC enables us to identify one 
specific potential source of endogenous growth. 

Imagine that technological progress allows 1 worker to produce 1 unit of output twice 
as fast. We will refer to this type of technological progress as production-accelerating. In 
neoclassical concept where production is instantaneous it means that in 1 unit of time 1 
worker produces twice as much output. Production-accelerating technological progress 
amounts to labour-augmenting technological progress. 

In ACT context, there is a clear distinction between two types of technological pro-
gress. Effects of labour-augmenting technological progress have been already described. On 
the other hand, ability to produce 1 unit of output twice as fast means that turning producer 
goods of order i into goods of order i-1 takes only ½ period instead of 1. 

To model such technological changes is somewhat awkward. However, little trick 
proves to be useful. Observe that if households need to wait for something, to make world run 
twice as fast amounts to become twice as patient. It is therefore possible to investigate proper-
ties of short-run steady state by using 2ρ  instead of ρ . If initially we identified one period 

with, say, one year, now one period amounts to half a year. If Y1 (which denotes output per 
one period) rises after switching from ρ  to 2ρ , it means that in a half year ‘fast’ economy 
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is able to produce more than ‘slow’ economy in a whole year. To see that output per one pe-
riod in fast economy is really higher than in slow one, define s as speed of production. Char-
acteristics of steady-states under various speeds of production can be examined by using sρ  

instead of ρ . With such a modification, rationing parameter m is given by: 

1m
s

σρ −
⎛ ⎞≡ +⎜ ⎟
⎝ ⎠

 (30) 

Since m increases in s, as speed of production grows to infinity, m approaches unity. 
Observe that for 1K > , the derivative of the long run production function (13) with respect to 
m is positive. Intuitively, if speed of production increases, it is not necessary to wait so long 
until labour in early stages of production yields utility. Therefore, it is optimal to allocate 
more labour in those stages than before and distribution of labour between various sectors 
approaches uniform distribution which increases total final product. This ‘levelling’ effect, 
coupled with the fact that what was one year is now half a year causes that doubling the speed 
of production has more than proportionate effect on production. To see both effect of an in-
crease in the speed of production, insert (30) in (13) to express the former and multiply by s to 
express the latter. We obtain long-run production function: 

1

1

1 1 1 1

1 1 1 1

K

K
s sY s

s s

σ σα α

σ σα

ρ ρ

ρ ρ

− −

− −

⎛ ⎞⎛ ⎞ ⎛ ⎞− + − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟=

⎜ ⎟⎛ ⎞ ⎛ ⎞− + − +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

Compare the changes in the speed of production to labour-augmenting technological 
progress. While the acceleration of production has more than proportionate effect on produc-
tion, it follows from (29) that an increase in coefficient of technology has only proportionate 

effect on production. Changes in s have greater effect on the production function ( )g K  than 

changes in T. 
To see the long run effects of an increase in the speed of production, observe that in 

Figure 6 and 7, growing speed of production would cause loci ( )C g K=  to be steeper. 

Steady states (for given values of speed of production s) ‘shift’ to the right and the economy 
grows Furthermore, increased speed of production means that labour in early stages is more 
productive, it is therefore optimal to invest in R&D and attempt to invent new stages of pro-
duction. Thus, introduction of possibility of increasing speed of production (for instance via 
second R&D sector) would therefore allow for endogenous growth in the model. It is ATC 
perspective that enables us to identify this source of economic growth.  

Recall our example with the abacus and the calculator. Since it would take years or 
decades to construct the calculator in medieval ages, instructions how to do that would be 
almost useless. If scholars were offered to buy such a textbook, they would not be willing to 
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pay much for it. In modern terms, it would not be efficient to invest in such a technology. On 
the other hand, in early 1900, the instructions to construct modern calculator would be ex-
tremely useful as it would not take so long to do that. It would be profitable to pay even a 
very high price for the textbook. Even if investment in new technology may not pay off in a 
slow economy, it may pay off in a fast economy. 

Moreover, as an increase in s shifts production function ( )g K  more dramatically than 

an increase in T, production-accelerating technological progress has greater long-run effects 
than labour-augmenting technological progress. 

Figures 8 and 9 provide numerical examples of different effects of two types of tech-
nological progress. Value of speed of production s and value of technology coefficient T ap-
pear on the horizontal axis. On vertical axis, steady-state number of stages of production K* 
(Figure 8) and steady-state product Y1* (Figure 9) appear. In the case of production-
accelerating technological progress, we let s move from 1 to 5, in the case of labour-
augmenting technological progress we let T move in the same interval. Numerical examples 
illustrate greater effect of an increase in the speed of production on steady-state value of num-
ber of stages of production and on steady-state product as opposed to an increase in the tech-
nology coefficient. 
 
F i g u r e s    8 and 9  
Two types of technological progress (α = 0.75; ρ = 0.04; A = 1; B = 0.2;   
ρL/AL = ρ/A = 0.04) 
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Of course, in reality, one cannot distinguish between different types of technological 
progress. Much more production stages might be needed to produce durable capital goods 
which allow acceleration of production. Think about assembly line, railway, telegraph or al-
ready mentioned calculator. On the other hand, production-accelerating technological pro-
gress might be disembodied at might consist in innovative managerial techniques (e.g. just-in-
time).  

As for the practical conclusions, our paper suggests following hypothesis: Apart from 
increasing the productivity of labour, industrial and managerial revolution might have had 
different influence on further economic development. Accelerating of production processes 
they allowed was a necessary condition for further investment in R&D to be effective. In this 
way, one investment in R&D fostered another. 

CONCLUSION 

 
The purpose of our paper is to analyse the issue of economic growth based on techno-

logical change if production is time-consuming. Inspired by Austrian theory of capital, we 
modified model of Jones and Manuelli (1997), section 6. We formalized Austrian stages of 
production as a sequence of CES-production functions and solved for short-run equilibriums 
for given number of stages of production as well as for long-run equilibriums when the num-
ber of stages of production grows as a result of R&D. Our analysis showed that because of 
impatience of economic agents, relatively less labour is allocated in high stages of production 
in comparison to low stages of production. Because of this, as the number of stages of produc-
tion grows to infinity, total product converges to finite value. Further more, once the number 
of stages of production reaches certain value, marginal utility of additional stage of produc-
tion is too low to motivate further investment in R&D, therefore, the economy converges to 
steady-state and endogenous growth is not possible. Moreover, if marginal final product of 
labour approaches infinity as allocation of labour in given stage approaches zero, it is always 
optimal to use all stages of production that are available under current technology (if it ap-
proaches finite value, there is an upper limit on the number of stages of production that it is 
optimal to use).  

We propose several remedies to this ‘problem’, traditional ones being accumulation of 
human capital and endogenous labour-augmenting technological progress. However, Austrian 
viewpoint motivates third solution – production-accelerating technological progress. If it is 
possible to increase a speed of production, i.e. to shorten the period needed to transform 
goods of order i to goods of order i-1, endogenous growth is possible. 

Our analysis hinges on the formalization of stages of production as a sequence of pro-
duction functions with constant elasticity of substitution higher than unity. However, it is not 
clear whether it is useful to think about labour and producer goods of order i as being substi-
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tutable with elasticity higher than 1 in the production of goods of order i-1. Intuition may 
even tell in favour of Leontief technology. Therefore, it is one of the major challenges to Aus-
trian economists to provide details of the technology on which Austrian theory of capital is 
founded – namely the technical details of how lengthening of production process can be re-
flected in the increase in final product. 

In spite of the fact that our analysis provides an argument against the possibility of 
secular growth as defined by Roger W. Garrison, incorporation of Austrian theory of capital 
into the theory of economic growth may lead to opening up of new areas of research. Rela-
tionships between accumulation of human capital, various kinds of technological progress 
with emphasis on increasing speed of production and structure of physical capital are ones of 
them. Practical necessity of the study of these phenomena is hardly to be overemphasized. In 
the light of Austrian theory of economic cycle as elaborated by Friedrich A. von Hayek, 
deeper understanding of capital structure and structure of production is one of the key ele-
ments of our understanding not only of economic growth, but of business cycles in growing 
economies as well. 
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