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ABSTRACT
Spatial Price Transmission Between Pigmeat Markets in Visegrad Coun-

tries: A Generalized Additive Modelling Approach
In the twenty first century horizontal price transmission has become the topic of a

great interest in applied microeconomics research in terms of the perspective of under-
standing on how geographically separated markets function. The paper provides detailed
review of applied research in the field of the spatial price transmission modelling, also the
most popular econometric models have been discussed in the light of the main advantages
and disadvantages with a special focus on nonlinear techniques. Being in line with the
last studies on non-linear time series models of spatial agri-food price transmission and
market integration, we introduce non-parametric technique of generalized additive mod-
elling in order to give evidence of agri-food market integration efficiency and non-linear
patterns in price linkages. The results of our empirical approach may contribute to the
knowledge about market efficiency and competitiveness as well as provide information to
policymakers.

KEYWORDS: Horizontal price transmission, market integration, nonlinear time se-
ries, generalized additive model

ABSTRAKT
Téma horizontálnej cenovej transmisie sa z hľadiska pochopenia fungovania geograficky

oddelených trhov stala v oblasti aplikovaného mikroekonomického výskumu významnou
najmä v dvadsiatom prvom storočí. Tento príspevok poskytuje detailný prehľad apliko-



vaného výskumu v oblasti modelovania priestorového prenosu cien, diskutuje aplikované
ekonometrické modely s prezentáciou ich hlavných výhod a nevýhod s osobitným zamer-
aním na nelineárne modelovacie techniky. V súlade s poslednými štúdiami o nelineárnych
modeloch časových radov priestorového prenosu agropotravinárskych cien a trhovej inte-
grácie je predstavená neparametrická metóda zovšeobecneného aditívneho modelovania
(GAM, z angl. generalized additive modelling). Táto metóda umožňuje overenie efek-
tívnosti integrácie agropotravinárskych trhov a odhalenie nelinearít v cenových prepoje-
niach. Výsledky nášho empirického prístupu môžu prispieť k poznaniu efektívnosti trhov
a konkurencieschopnosti, ako aj poskytnúť informácie tvorcom politík.
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1 Introduction
The spatial separation has led to vast increase in number of studies that are evaluating the
price linkages between goods at the same stage of the supply chain with different origin in
terms of changes in speed, magnitude and nature. Spatial price transmission and market
integration has become the topic of a great interest in applied microeconomics research
from the perspective of understanding on how geographically separated markets function.

A consideration of horizontal price relationships has been used to address a variety
of economic issues. Horizontal (spatial) price transmission analysis contributes to the
knowledge about market efficiency, provides information to policymakers (Braha et al.,
2019; Dong et al., 2018; Olipra, 2020; Ozturk, 2020; Roman & Kroupová, 2022) and in-
sights into the infrastructure efficiency of markets (Kharin, 2019; Salazar, 2018) as well as
gives specific evidence concerning the markets competitiveness and arbitrage effectiveness
(Bakucs et al., 2015; Goodwin et al., 2021; Goodwin & Piggott, 2001; Serra et al., 2006).
In research from Shen et al. (2022), analyzing price forming mechanism is a critical means
to guide farmers’ behaviors, regulate their economic activities and price transmission is
one important reason to affect marketing prices. Additionally, comprehension of the spa-
tial price transmission mechanism could shed light on trade strategy adjustment to boost
some industries (Alam et al., 2022).

The Law of one price and spatial arbitrage theory is the base of the analysis of spatial
market integration and market efficiency. Muwanga and Snyder (1999) argued that ad-
herence to the law of one price is a sufficient condition for spatial price efficiency, implying
perfect market integration, and completely excluding long-run arbitrage opportunities. In
literature the terms ”market integration” and ”market efficiency” are closely related and
often used interchangeably. Horizontal price transmission reflects the degree of market
integration and efficiency. Vargova and Rajcaniova (2018) came to a similar conclusion,
that integrated markets are considered to be efficient markets and market efficiency esti-
mation is carried out through the examination of spatial market integration. According
to the research from Sexton et al. in 1991, geographic markets are especially relevant to
agri-food sector because agricultural products are mostly bulky and perishable, as well
as areas of production and consumption are separated, hence transportation is expensive.
To return to our main argument, it is clear that the horizontal price transmission has
a significant microeconomics impact and, according to the research from von Cramon-
Taubadel (2017), offers a lot of fascinating opportunities for work by applied researchers
who are concerned with the functioning and outcomes of agricultural markets.

An extensive empirical literature considering spatial price transmission on agri-food
markets has been accumulated over the last few decades. Study from von Cramon-
Taubadel and Goodwin (2021) has shown that much of the research on spatial market
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linkages has reflected methodological advances that have led to increasingly nonlinear
time-series models. Indeed, most research on nonlinear modelling has relied on paramet-
ric methods (Ridha et al., 2022; Xue et al., 2021), whereas there has been an increasing
interest in the non-parametric (Guney et al., 2019) and machine learning (Kresova &
Hess, 2022) techniques to estimate spatial price relationships on agri-food markets. Ac-
cording to the new research (von Cramon-Taubadel & Goodwin, 2021), advances in the
empirical literature over the last few years have demonstrated that price relationships in
the agri-food chain are highly specific and complex. Indeed, price linkages data can be a
real ”mess” that is hybrid of two patterns: linear and nonlinear. Considering this fact,
it is reasonable to conclude that thorough analysis of spatial price relationships needs a
more flexibility in the models. Generalized additive models (GAM) allow much greater
modeling flexibility, providing a better fit in the presence of more complicated nonlinear
price relationships. One can specify the model in terms of parametric, semi-parametric
or non-parametric smooth functions rather than detailed parametric relationships. De-
velopments in computational technologies may be helpful in the modelling since GAMs
use automatic smoothness selection methods to identify the complexity of the nonlinear
price relationships.

While there has been much research on nonlinear time-series models of horizontal agri-
food price linkages, just few researchers have taken GAMs into consideration. Therefore,
there is still a lack of robust research on spatial price transmission in EU agri-food markets
based on GAM approach - this is a gap that we could address in our study.

The reminder of the paper is organised as follows. Section 2 reviews the relevant liter-
ature on spatial price transmission in agri-food markets, section 3 describes the empirical
methodology, the findings are discussed in section 4 and the final section concludes the
paper.

2 Literature Review
The applied analysis of market integration has mostly used models that are the math-
ematical representation of horizontal price linkages in selected agro-commodities mar-
kets. A wide variety of empirical techniques are used in the literature to study spatial
price transmission. From conceptual point of view, the literature on the spatial price
transmission and market integration in agri-food markets has been categorised into three
empirical approaches, namely ”pre-co-integration”, ”co-integration” and ”other” (”post-
co-integration”) (von Cramon-Taubadel, 2017; von Cramon-Taubadel & Goodwin, 2021).

The first strand of studies can be characterized by using spatial correlation coeffi-
cients and simple linear regression models for estimating the relationships between agri-
food prices in various regions (Ravallion, 1986; Richardson, 1978; Stigler & Sherwin,
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1985; Timmer, 1974). However, the correlation analysis did not illustrate the extent to
which markets are integrated. As a result of the criticism in correlation technique, lin-
ear regression-based approaches have been introduced. Mundlak and Larson (1992) built
static regression models of linkages between domestic and world prices of agricultural
commodities for 58 countries of the United Nations and for the countries of the European
Community. Indeed, there is the effect time lag when price in one location changes. These
dynamic effects have been captured by adding lagged prices as a right-hand-side variables
in the regression equation (Ravallion, 1986; Timmer, 1987). Although this was rationale,
ignoring the non-stationary and nonlinear nature of price data was leading to the model
misspecification.

Second stream of literature on spatial price transmission relies on co-integration tech-
nique and error correction modeling. Price series tend to move identically over time and
have common stochastic trend, i.e. series are co-integtated. In such case one can ob-
tain super-consistent ordinary least squares estimates for the model parameters. Granger
(1981) pointed out, that a vector of non-stationary time series could have a linear combi-
nations which are stationary in levels. The co-integration approach was first introduced
by Nobel laureates Engle and Granger in 1987 after British economists Granger and
Newbold (1974) published the spurious regression concept. However, there exist some
limitations of the Engle-Granger framework which have been addressed in cointegration
tests by Johansen(1988, 1991, 1995), Phillips and Ouliaris (1990), Gregory and Hansen
(1996), Hatemi-J (2009) and Maki (2012).

Many latest studies use linear vector error correction model (VECM) representation of
spatial price transmission between agri-food markets in Europe (Esposti & Listorti, 2018;
Fernández-Polanco & Llorente, 2019; Hillen & von Cramon-Taubadel, 2019; Ozturk, 2020;
Penone et al., 2022; Svanidze & Durić, 2021; Svanidze et al., 2022), in the Asian region
(Dong et al., 2018; Thong et al., 2020), in the Southern and Northern American continent
(Gálvez-Soriano & Cortés, 2021; Martignone et al., 2022; Villanueva, 2022) and in Africa
(Martey et al., 2020; Nzuma & Kirui, 2021).

Several researchers have previously explored agri-food market integration among Viseg-
rad Group (also known as ”V4”) countries by using VECM approach. For instance, Var-
gova and Rajcaniova (2018) examined the linkages among the prices of raw cow milk in
V4 countries. They found some patterns in price transmission, namely the fastest adjust-
ment speed in Hungarian market as a responce to the price shocks of the other countries,
Slovak market faster reaction to the price shocks from Poland, the most sensitive reaction
in Slovak and Czech markets to the price shocks from Hungary.

In like manner, Roman and Kroupová (2022) evaluated spatial processes between Pol-
ish and Czech markets based on trade flows and prices for raw milk, butter, skimmed milk
powder and Edam cheese. Researchers concluded that the Czech Republic and Poland
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are characterized by a long range of linkages, which is a strong indication of the market
integration for the all analyzed products. Apart from VECMs, these authors and other
reserchers (Brown et al., 2021; Gao et al., 2022; Shen et al., 2022) built vector autore-
gressive models (VAR). In fact, VECM is a restricted VAR model designed to be used
with nonstationary price series that are known to be co-integrated. If cointegration exists,
then VECM, which combines price variables in levels and differences, can be estimated
instead of a VAR in levels. By way of contrast, in academic literature there is an issue of
whether the variables in a VAR need to be stationary. Indeed, some studies argued that
non-stationary variables can be directly involved in VAR model without prior transfor-
mation into stationary ones (Fanchon & Wendel, 1992; Kilian & Lütkepohl, 2017; Stock
et al., 1990).

Given the limitation of VAR-VECMs in the aspect of linearity, further development
in spatial agri-food price transmission analysis has been carried out within the framework
of regime-dependent models.

Trade arbitrage requires that the prices of related goods move together, but the pres-
ence of transaction costs can produce a band-threshold effect, where only deviations above
a threshold will have an effect on price movements (Hansen, 2011). A threshold brings
nonlinearities into the functional relationships between prices (Tong, 1990). In order to
incorporate transaction costs effect, threshold autoregressive (TAR) models in different
modifications became widely used, where transaction costs from one agri-food market to
another one could be estimated by a threshold parameter (Durborow et al., 2020; Good-
win & Piggott, 2001; Hamulczuk et al., 2019; Yovo & Adabe, 2022). These models relate
to piecewise linear regressions. Closely related to the TAR models are the smooth tran-
sition autoregressive (STAR) models, where the patterns of price adjustment are smooth
rather than discrete and allow for a continuous transition between regimes (Goodwin et
al., 2011).

Balke and Fomby (1997) introduced the threshold co-integration approach, more pre-
cisely, a combination of Tong’s TAR model and Engle-Granger’s VECM. Extensions to a
threshold VECM have been made by several researchers (Enders & Siklos, 2001; Hansen
& Seo, 2002; Seo, 2006). The threshold vector error correction model (TVECM) has
been substantially influential in agricultural economics research, specifically, spatial price
transmission studies (Ahoba & Gaspart, 2019; Kharin, 2019; Lence et al., 2018; Lizama-
Fuentes et al., 2018).

In the context of modelling regime-dependent price volatility transmissions between
agri-food markets, it is worth mentioning about a large number of empirical studies related
to asymmetric price transmission, that are highly heterogeneous in the sence of type of
asymmetries and applied approaches. Analysis of asymmetry in price linkages is important
because it provides valuable information on market structure and performance. There
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exist surveys that have presented a review of the empirical techniques on asymmetric
price transmission in agri-food markets (Frey & Manera, 2007; Meyer & von Cramon-
Taubadel, 2004; von Cramon-Taubadel & Goodwin, 2021).

Assymetric error correction model (AECM) has been reliable enough to be widely
used as a tool to estimate spatial price assymetries and adequately represents price series
behavior in the presence of non-stationary and cointegration. In the model the correction
of deviations from the long-run equilibrium relationship between price variables switches
between regimes depending on whether the deviation from equilibrium is positive or neg-
ative. Indeeed, recent literature has progressed to display threshold-type nonlinearity in
the error correction of the prices (Alam et al., 2022; Braha et al., 2019; Gizaw et al., 2021;
Xue et al., 2021) instead of linear relationships (Jaramillo-Villanueva & Palacios-Orozco,
2019; Purwasih et al., 2020; Schulte & Musshoff, 2018; Wiranthi, 2021).

On the other hand, the AECM hypothesises that the long-run price relationship is
characterized by a symmetric linear combination of nonstationary price variables. Ac-
cording to research from Rezitis (2019), the assumption of a linear long-run equilibrium
price relationship may lead to misleading empirical findings in cases where transaction
costs (or policy interventions) are significant factors. To identify both long- and short-run
asymmetric price transmission between prices, the nonlinear autoregressive distributed lag
(NARDL) model introduced by Shin et al. (2014) is widely used. The NARDL model
has several advantages over the aforementioned empirical techniques. First, the model
is estimable by ordinary least squares and reliable long-run inference can be achieved by
bounds-testing regardless of the integration orders of the variables (in contrast to ECMs,
which impose the assumption that all regressors should be integrated of the same order).
Second, it allows the joint modeling of asymmetries and cointegration dynamics. Cur-
rently, there are a few studies on spatial (Kamaruddin et al., 2021; Ridha et al., 2022)
and vertical (Fousekis et al., 2016; Liu et al., 2022; Rezitis, 2019) price transmission by
means of NARDL modeling in the agri-food markets.

The third strand of literature on agri-food market integration relies on non-parametric
approaches as well as parity bounds models (PBM).

The PBM describes spatial price equilibrium in a a switching regime framework, first
introduced by Spiller and Huang (1986), Spiller and Wood (1988), and extended further
by Sexton et al. (1991), Baulch (1997), Barrett and Li (2002). Trade costs are included
directly in the PBM unlike VECM-based approach, which only uses data on prices. How-
ever, despite the advantages, the PBM has been criticised for some reasons (Negassa &
Myers, 2007; von Cramon-Taubadel, 2017). In recent years, PBM analysis has received
far less attention in the literature unlike co-integartion methods, nonetheless there are
studies of agri-food market integration based on PBM technique (Durborow et al., 2020;
Hu & Brorsen, 2017).
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In fact, aforementioned parametric modelling approaches have been criticised for the
choice of functional form and pattern of the transition process between regimes. In con-
trast, non-parametric methods offer to analyse price transmission in a more flexible way,
having diminished, first of all, the assumption of linearity. Several non-parametric tech-
niques have been documented in the literature on spatial price transmission between
agro-commodities markets. Only a few works in literature on agri-food market integra-
tion demonstrate such methods as copula-based models (Capitanio et al., 2020), local
polynomial regressions (Fousekis, 2015; Serra et al., 2006), penalized smoothing spline
regressions within the framework of generalized additive models (GAM) (Guney et al.,
2019; Rosales & von Cramon-Taubadel, 2015) and semi-parametric single index thresh-
old models (Choe & Goodwin, 2022). To our best knowledge, no prior studies have
examined spatial agri-food price transmission analysis in Visegrad group countries within
non-parametric approach.

Finally, agricultural economists have traditionally been more interested in the trans-
mission of prices in levels than in the transmission of price volatilities. However, it is
worth mentioning that lately, an increasing number of studies employ dynamic condi-
tional volatility methods, namely univariate and multivariate Generalized Autoregressive
Conditional Heteroscedasticity (GARCH) models with several specifications (dynamic or
constant conditional correlation), to examine spatial price-volatility transmission in agri-
food markets. (Assefa et al., 2015; Guo & Tanaka, 2020; Tanaka & Guo, 2020; Zheng &
Pan, 2022).

3 Methodology
We will carry out spatial price transmission analysis using weekly observations related to
average nominal prices for pigmeat in slaughter weight of the class E at the wholesale
stage from May 2004 to February 2023 in the Visegrad group countries. The number of
observations equals to 981, that is sufficient and desirable since the larger sample, the
more robust our results are. The source of the price data is the European Commission’s
agricultural and rural development department. In order to calculate price elasticities and
mitigate price series fluctuations, we use the logarithmic transformation of weekly prices
measured in Euro per unit that allows the results to be interpreted in percentage change
terms.

We begin our study with the preliminary tests for the purpose of identifying time
series properties followed by the appropriate model specification. Firstly, we perform unit
root tests for each of the time series of logarithmic prices, namely the sieve bootstrap
ADF test1 (Palm et al., 2008; Smeekes, 2013).

1We use the bootUR package in R, written by Smeekes and Wilms (2022).
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Classical unit root tests, such as ADF test (Dickey & Fuller, 1981), rely on asymptotic
inference and suffer from potentially size distortions. For this reason, bootstrap unit
root tests have become a commonly used alternative to asymptotic inference (Smeekes
& Wilms, 2020). The bootstrap approximates the exact distribution of the test statistic
by repeatedly drawing new samples from the original sample, thus capturing the features
of price series. The bootstrap unit root tests have accurate size properties under very
general conditions.

In order to select maximum lag, we apply ad-hoc rule suggested by Schwert (1989) as
follows:

pmax =

[
12 ·

(
T

100

)1/4
]

(1)

where T is the sample size,
[
·
]

denotes the integer part.
The optimal lag order is determined in accordance with the modified version of

Bayesian Information Criterion (mBIC) (Ng & Perron, 2001) as follows:

popt = arg min
p⩽pmax

mBIC(p) (2)

where mBIC(p) is computed as follows:

mBIC(p) = ln
(
σ̂p

2
)
+

(
ln (T − pmax)

)(
τT (p) + p

)
T − pmax

,

σ̂p
2 =

( 1

T − pmax

) T∑
pmax+1

ϵ̂t
2

τT (p) =

(
π̂2

σ̂p
2

) T∑
pmax+1

ydt−1

(3)

where ϵ̂t are obtained from ADF test regression ∆ydt = πydt−1 +
∑p

j=1 ψj∆y
d
t−j + ϵt, based

on the generalized least squares (GLS) detrended data.
Ng and Perron have showed that that mBIC has improvements over the traditional

BIC (Schwarz, 1978), while testing the time series stationarity.
As a next step, to check the price series and determine the cointegrating rank we use

the Johansen procedure (Johansen, 1988; Johansen, 1991) based on maximum likelihood
estimation. Unlike Engle-Granger (Engle & Granger, 1987) technique, it avoids the issue
of choosing a dependent variable and deals with multivariate system of price variales.
In order to identify the number of cointegrating vectors, there have been proposed two
different likelihood ratio tests, namely the trace and the maximum eigenvalue ones as
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follows:
LR(r,n) = −T

n∑
i=r+1

ln (1− λ̃i),

LR(r,r+1) = −T ln (1− λ̃r+1)

(4)

where LR(r,n) is the likelihood ratio statistic for testing whether rank (
∏
) = r versus the

alternative hypothesis rank (
∏
) ⩽ n; LR(r,r+1) is the likelihood ratio test statistic for

testing whether rank (
∏
) = r versus the alternative hypothesis that rank (

∏
) = r+ 1; n

is the number of variables; r is the number of cointegrating relationships; T is the sample
size; λ̃i is the i-th largest canonical correlation;

∏
is the coefficient matrix obtained from

the VAR model, where
∏

= αβ′ , α are known as the error correction terms and each
column of β is a cointegrating vector in the long run.

If two tests provide contradictory results, we are going to rely on trace statistic since
it tends to have superior power in empirical studies (Lütkepohl et al., 2001).

As previously mentioned, a linear pattern may not be appropriate in most cases of price
development, whereas the assumption of linearity may hold only over short periods. Some
non-linear effects can be accommodated in linear models by using polynomials of different
order, dependent variable transformation or regime-switching dummies. However, there
exist some issues related to specifying functional form of more complex price relationships
and interpreting the results of modelling. Generalized Additive Model (GAM) has been
proposed as an alternative without necessity to prespecify the functional form of complex
non-linear relationships. The GAM is an extension of the linear model in such a way that
allows to maintain the interpretability and model the non-linear effects.

The GAMs are particularly useful for exploratory data analysis to allow the data to
“speak for themselves”(Yee, 2015). GAMs have resulted from additive models (Friedman
& Stuetzle, 1981) and have been introduced by Hastie and Tibshirani (1990). GAM
framework was extended further by Wahba (1990), Eilers and Marx (1996), Ruppert et
al. (2003), Reiss and Ogden (2009), Wood (2000, 2003, 2004, 2008, 2011, 2013).

GAMs are non-parametric extensions of the generalised linear model (GLM) and can
be formally written as:

g(E(yi)) = α +
k∑

i=1

βixi +
m∑
j=1

fj(xk+j) + ϵi,

ϵi ∼ N (0, σ2I)

(5)

where g(·) is a monotonic function that links the expected value E(y) to the predictors
x1, x2....xi+j (identical in our study), α is an intercept, the terms fj(·) denote smoothing,
non-parametric functions of the covariates. Smoothing function f is composed by sum
of basis functions b and their corresponding regression coefficients, i.e. formally f(x) =
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∑
i bi(x)βi. The model may include smoothing functions alone or jointly with linear terms

(
∑

i βixi).
Indeed, the standard coefficients in linear regression are replaced by non-parametric

relationships, modelled by smoothing functions in GAM. GAMs are semi-parametric be-
cause the probability distribution of the dependent variable is specified (e.g. economic
variables follow mostly normal distribution), whereas smoothing functions

∑
j fj(xj) are

non-parametric (e.g. thin plate regression splines). The main advantage of GAMs is that
they can deal with highly non-linear relationships between the dependent variables and
the predictors without the necessity to transform variables or use polynomial terms.

In fact, the smoothing functions are based on splines, special mathematical functions
defined piecewise low-degree polynomials (called basis functions), joined at points called
knots. Smoothing spline is a sum of weighted basis functions, evaluated at the values of
the data. Splines have variable stiffness. In our study, we use penalized regression splines
based on eigen approximation to a thin plate splines (TPS)2. Unlike others, thin plate
regression splines do not suffer from the problem of choosing knot positions or selecting
basis functions. Moreover, they can deal with any number of predictors (Wood, 2006).

The GAM can be estimated with penalized likelihood maximization (corresponds to
penalized least squares in our study) by minimizing loss function as follows:

N∑
i=1

(yi − f(xi))
2 + λJ(f)

J(f) =

∫
R
f ′′(x)2dx

(6)

where λJ(f) is the penalty term, containing λ - penalization smoothing parameter is used
to regularize the spline smoothness (trade-off between the smoothness and wiggliness of
the estimated smoothing function) and J(f)3 - penalty function equals to the integral of
the squared second derivative over the interval (one-dimensional thin plate spline in our
study). Accordingly, the more curves the higher the penalty.

As a next step, we choose optimal smoothing parameter by using cross validation
technique. Parameter λ is determined based on the minimum generalized cross-validation
score (see Eq.7).

2To build the model, mgcv package in R, written by Wood (2022), is used.
3TPS may incorporate more than one covariate. In the case of interactions between model predictors,

we can design two, three or multidimensional TPS. For instance, two-dimentional TPS can be written as
J2(f) =

∫
R
∫
R

[(
∂2f(x)
∂x2

1

)2

+ 2
(

∂2f(x)
∂x1∂x2

)2

+
(

∂2f(x)
∂x2

2

)2
]
dx1dx2, where (x1, x2) are the two coordinates of

the vector x. The formula of multidimensional TPS can be found in the book by Wood (2006).
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νλ =
n
∑n

i=1(yi − f̂(xi))
2[

tr(I − A)
]2 (7)

where f̂(x) is the estimate from fitting to all the data, tr is the trace of matrix, I is the
identity matrix and A is the projection matrix, i.e. influence matrix X(XTX + S)−1XT

with penalty matrix S =
∑

j λjSj.4

As mentioned above, the GAM is fitted by penalized least squares, more precisely pe-
nalized iteratively re-weighted least squares (P-IRLS). In a linear model, we can estimate
the regression parameter using ordinary least squares (OLS) as β̂ols = (XTX)−1(XTy).
In this case, we have errors with means of zero and constant variance, i.e. ϵ ∼ N (0, σ2I).
However, if the relationship between dependent and independent variables is not linear,
OLS errors have an unconstant variance, i.e. ϵ ∼ N (0,C). The solution could be using
weighted least squares (WLS), i.e. β̂wls = (XTC−1X)−1(XTC−1y). In fact, we can not
apply that for GLM type due to using link function (y-variable of a GLM is different
from the predicted variable). In order to overcome the aforementioned issue, we can use
the IRLS algorithm, when the parameters are estimated by iterating over specific recur-
sive relationships. Given the fact, that GAMs are just semi-parametric GLMs, penalized
version of the IRLS method is applicable to them. Therefore, GAM-coefficients can be
obtained as β̂P−IRLS = (XTX + S)−1XTy.

The interpretation of GAM results is mainly based on the effective degrees of freedom
(EDF). To measure the GAMs’ flexibility, the effective degrees of freedom are calculated
as the trace of the projection matrix, i.e. tr(A). Indeed, unlike the degrees of freedom
in a linear regression, the EDF of the GAM are estimated and interpreted in different
manner. In standard regression fitted by OLS, the model degrees of freedom equal to the
number of non-redundant free terms in model. This is not applicable with GAMs due
to the penalized estimation. Since the number of free parameters in GAMs is difficult
to define, the EDF are instead related to the smoothing parameter λ, such that from
Eq.7 the greater the penalty, the smaller the EDF. Higher values of EDF imply more
complex, ”wiggly” splines. In other words, a smaller roughness penalty corresponds to
a higher EDF and a lower value of smoothing parameter. The EDF with values close
to one suggest that price relationships effect is equivalent to one in linear VAR model.
Accordingly, a non-linear effect can be revealed if the values of EDF are greater than one.
In a theoretical sence, the EDF vary from zero to infinity.

After assessing the time series properties of the price data, we fit the GAM in VAR (or
VECM) representation with lagged values of logarithmic prices as the thin plate regression
splines. The specification of the model relates to pair-wise price series of each agri-food

4See Wood (2004, 2006) for additional details and discussion of generalized cross-validation score
calculation.
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market.

4 Results and Discussion
The price development in Visegrad countries over the period of 2004-2023 can be observed
in Figure 1. The observations relate to the weekly prices of pigmeat carcasses at the
wholesale stage in Euro per unit. As seen from the Figure 1, original prices appear to
move synchronously with the common upward trend since the end of 2021. Hence, some
pattern of spatial price transmission with potential long-run linkages might be present.
Furthermore, some non-linear relationships pattern is also apparent.

In order to describe the basic features of the price series, we summarized descriptive
statistics in Table 1. Considering the results, it is reasonable to conclude that prices in
Czech Republic are less dispersed around the mean value. Unlike other price series, the
coefficient of variation is higher for prices in Poland. The standard deviation is rather
low, so prices are close to the mean of our samples. The distributions have a right skew
and skewness coefficient value is close to zero (as in normal distribution). Additionally,
kurtosis is also close to zero (Fisher’s definition) but with negative values meaning the
flatter peaks and lighter tails than the normal distribution.

Table 1: Descriptive statistics for the weekly price series over the period of May 2004-February 2023

N Mean Std.Dev Min Max Median CV IQR Skewness Kurtosis

CZ 981 154.42 19.24 119.91 216.88 151.43 0.12 27.10 0.62 -0.22
HU 981 156.42 20.34 118.71 225.34 151.96 0.13 26.78 0.72 -0.05
PL 981 150.48 22.64 111.53 227.41 146.81 0.15 34.04 0.58 -0.20
SK 981 158.17 20.42 112.21 218.10 153.39 0.13 28.31 0.63 -0.17

Source: European Commission’s agricultural and rural development department

Taking the algorithm described above into account, we start our analysis with checking
the log-transformed price series for stationarity. From the Figure 1 time series have a
changing mean, therefore intercept worth being incorporated in the regressions for unit
root tests. Moreover, visual examination of the price series suggests that the model for
unit root test should contain a time trend. (Non)stationarity is detected with the bootsrap
version of Dickey-Fuller test. Results are shown in the Table 2. According to the test,
the null hypothesis of non-stationarity can be rejected for the price variables. Testing
based on time series in levels has revealed significant test statistics at 1 % for Czechia and
Poland, 5 % for Hungary, 10 % for Slovakia5. Hence, the bootstrap unit root tests show,

5Bootstrap augmented Dickey-Fuller test with OLS estimation (DF-OLS) has detected stationarity
for Slovak price series at 1 % of significance.
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Figure 1: Pigmeat price development in Visegrad group countries for the period of May 2004 to February
2023

that log-transformed price variables are stationary in levels, i.e. I(0).
But for detecting stationarity in the price series we would test our time series for

cointegration and deal with them within vector error correction modeling. Otherwise,
in our study we fit time series with GAM approach in VAR representation to capture
potential non-linearities in price relationships.

Our GAMs in VAR model representation of pairwise price linkages have been esti-
mated with the penalized maximum likelihood algotithm described above. We built the
GAMs as the sum of smooth functions s(·) of the input. The idea is that each predictor
makes a separate contribution to the response, and these just add up, but these contribu-
tions don’t have to be strictly proportional to the inputs. In the same way as parameter β
represents in linear regression, the partial response function f(·) still captures the change
of the response variable to the change of the inputs (see A).

All lagged price variables are allowed to have non-linear effects in representing price
transmission. Additionally, parametric intercept is also incorporated in the model. We
assumed that the residuals of the GAMs are normally distributed. Lag lengths of 2-3
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Table 2: Results of the bootstrap Dickey-Fuller unit root test

Price seriesa Largest rootb Test statistic p-valuec

CZ 0.9889 -3.375 0.009
HU 0.9864 -3.249 0.014
PL 0.9859 -3.363 0.007
SK 0.9904 -2.505 0.089

a Logarithmic prices in levels
b The largest root of the autoregressive lag polynomial, corresponding to the coefficient of the lagged series in the DF

regression
c Calculations are made using 1000 bootstrap replications of size n = 1.75T 1/3, the deterministic specification contains

intercept and trend, lag length selection is done with mBIC, minimum lag length in the regressions equals to zero.
Instead of standard augmented DF test, we use DF-GLS test.

Source: Own calculations

have been defined in accordance with Schwartz-Bayesian information criteria (BIC). The
model diagnostics seem to give the indication that the model assumptions are not violated
(see B).

Tables 3 - 6 show the GAM estimated parameters for each price pairs, namely price se-
ries for pigmeat markets in Czechia, Slovakia, Hungary and Poland. The effective degrees
of freedom (EDF) represent the measure of non-linearity implied by the responses. They
can be interpreted like how much given price variable is smoothed, consequently higher
EDF value implies more complex splines and more ”wiggly” price transmission between
agri-food markets in V4 countries. The EDF equal to 1 is equivalent to a linear relation-
ship, the EDF value range of 1-2 can be considered a weakly non-linear relationship, and
EDF value exceeding 2 represents a highly non-linear price relationships (Hunsicker et al.,
2016). Moreover, the upper values of EDF correspond to the smaller smoothing param-
eters. In our analysis, the largest EDF value of 9 for the smoothed individual covariate
can be seen in the GAM model of spatial price transmission between Slovak and Polish
markets (see table 4).

Above all, most of the nonlinear effects are highly statistically significant as shown
with the F-statistics in the tables. Given that fact, we can conclude that pigmeat markets
in V4 countries are well integrated. Weak non-linearity can be observed when pigmeat
prices ”transmit” from Hungarian market to Czech, Czech one to Polish, Slovak market to
Hungarian and from Hungarian to Polish. We have revealed the most ”wiggly” non-linear
pattern in spatial price transmission between Slovak and other V4 countries markets,
especially in the pairs between Slovakia-Czechia with total EDF equals to 27.886 as well
as Slovakia-Poland, where total EDF is 41.605 and all the splines are significant at the 1
% level of significance (see table 4).

Indeed, we have showed that semi-parametric GAM representation of price transmis-
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Table 3: Bivariate penalized GAM model estimates: Czechia (CZt)

GAM component EDF Smoothing
parameter, λ

F value

Model I (CZ∼HU, 2 lags)
Parametric components
Intercept, β0 1.000 5.033 a 10740b***
Non-parametric components
s(CZt−1) 1.000 1799501 1230.57***
s(CZt−2) 3.068 2.683882 30.07***
s(HUt−1) 1.000 2798774 46.75***
s(HUt−2) 1.000 3655286 32.80***

Total EDFc 8.068
adj.R2 =0.985
GCV score, GAM: 0.00021652,VAR:0.00021846
AIC(GAM)=-5480,41;AIC(VAR)=-5471.65
LR-test of linear VAR vs.GAM, Test statistic=4.5028***

Model II (CZ∼SK, 2 lags)
Parametric components
Intercept, β0 1.000 5.033 a 10874b***
Non-parametric components
s(CZt−1) 1.000 123322 1591.43***
s(CZt−2) 5.416 0.159217 23.20***
s(SKt−1) 5.414 0.098419 10.10***
s(SKt−2) 4.171 0.181794 10.08***

Total EDFc 18.001
adj.R2 =0.986
GCV score, GAM: 0.00021341,VAR:0.000219456
AIC(GAM)=-5494,82;AIC(VAR)=-4893.35
LR-test of linear VAR vs.GAM, Test statistic=3.3548***

Model III (CZ∼PL, 3 lags)
Parametric components
Intercept, β0 1.000 5.033 a 11477b***
Non-parametric components
s(CZt−1) 1.000 2215946 1158.62***
s(CZt−2) 1.000 841692 20.04***
s(CZt−3) 1.000 1353147 4.73**
s(PLt−1) 4.593 0.162814 20.92***
s(PLt−2) 6.212 0.0392578 5.76***
s(PLt−3) 6.730 0.0392260 2.90***

Total EDFc 22.535
adj.R2 =0.987
GCV score, GAM: 0.00019231,VAR:0.000196122
AIC(GAM)=-5591,19;AIC(VAR)=-5571.57
LR-test of linear VAR vs.GAM, Test statistic=2.7178***
a estimate for constant by penalized MLE in place of the Smoothing parameter (λ)
b t-value instead of F-value
c taking parametric dispersion term into account

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Source: Own calculations

17 Working Paper



Table 4: Bivariate penalized GAM model estimates: Slovakia (SKt)

GAM component EDF Smoothing
parameter, λ

F value

Model I (SK∼HU, 2 lags)
Parametric components
Intercept, β0 1.000 5.056 a 8645b***
Non-parametric components
s(SKt−1) 8.965 0.000283 90.54***
s(SKt−2) 3.837 0.160175 15.39***
s(HUt−1) 7.215 0.020438 19.17***
s(HUt−2) 1.717 1.527770 27.93***

Total EDFc 23.734
adj.R2 =0.979
GCV score, GAM: 0.00034288,VAR:0.00038296
AIC(GAM)=-5030,84;AIC(VAR)=-4922.11
LR-test of linear VAR vs.GAM, Test statistic=7.3839***

Model II (SK∼CZ, 2 lags)
Parametric components
Intercept, β0 1.000 5.056 a 8598b***
Non-parametric components
s(CZt−1) 6.404 0.033608 18.86***
s(CZt−2) 6.697 0.031371 11.06***
s(SKt−1) 8.540 0.003934 97.66***
s(SKt−2) 4.245 0.105740 15.37***

Total EDFc 27.886
adj.R2 =0.978
GCV score, GAM: 0.00034811,VAR:0.00039437
AIC(GAM)=-5016,25;AIC(VAR)=-4893.35
LR-test of linear VAR vs.GAM, Test statistic=6.8538***

Model III (SK∼PL, 3 lags)
Parametric components
Intercept, β0 1.000 5.056 a 9591b***
Non-parametric components
s(SKt−1) 6.592 0.021549 101.55***
s(SKt−2) 8.161 0.003024 7.14***
s(SKt−3) 9.000 0.00000002 10.51**
s(PLt−1) 3.955 0.237344 39.43***
s(PLt−2) 6.135 0.043090 7.77***
s(PLt−3) 5.762 0.063100 2.54**

Total EDFc 41.605
adj.R2 =0.987
GCV score, GAM: 0.0002836,VAR:0.0003415
AIC(GAM)=-5212,54;AIC(VAR)=-5029.15
LR-test of linear VAR vs.GAM, Test statistic=7.0103***
a estimate for constant by penalized MLE in place of the Smoothing parameter (λ)
b t-value instead of F-value
c taking parametric dispersion term into account

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Source: Own calculations
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Table 5: Bivariate penalized GAM model estimates: Hungary (HUt)

GAM component EDF Smoothing
parameter, λ

F value

Model I (HU∼SK, 2 lags)
Parametric components
Intercept, β0 1.000 5.045 a 8237b***
Non-parametric components
s(SKt−1) 4.441 0.245521 9.61***
s(SKt−2) 3.933 0.322377 11.02***
s(HUt−1) 1.000 4464692 1107***
s(HUt−2) 1.000 1812938 50.72***

Total EDFc 12.374
adj.R2 =0.977
GCV score, GAM: 0.00037157,VAR:0.00038126
AIC(GAM)=-4951,76;AIC(VAR)=-4926.45
LR-test of linear VAR vs.GAM, Test statistic=4.5567***

Model II (HU∼CZ, 2 lags)
Parametric components
Intercept, β0 1.000 5.045 a 8047b***
Non-parametric components
s(CZt−1) 1.000 1686169 5.01**
s(CZt−2) 4.196 0.568944 1.92*
s(HUt−1) 4.871 0.195969 161.03***
s(HUt−2) 1.991 1.588069 27.68***

Total EDFc 14.058
adj.R2 =0.976
GCV score, GAM: 0.00034811,VAR:0.00039437
AIC(GAM)=-4904.52;AIC(VAR)=-4895.77
LR-test of linear VAR vs.GAM, Test statistic=2.2892***

Model III (HU∼PL, 3 lags)
Parametric components
Intercept, β0 1.000 5.045 a 8850b***
Non-parametric components
s(HUt−1) 6.092 0.050456 80.13***
s(HUt−2) 3.582 0.153899 0.72
s(HUt−3) 4.611 0.138168 1.23
s(PLt−1) 4.850 0.158263 25.35***
s(PLt−2) 3.472 0.213861 9.80***
s(PLt−3) 5.833 0.082775 1.44

Total EDFc 30.377
adj.R2 =0.980
GCV score, GAM: 0.0003277,VAR:0.0003342
AIC(GAM)=-5070.36;AIC(VAR)=-5050.31
LR-test of linear VAR vs.GAM, Test statistic=2.2238***
a estimate for constant by penalized MLE in place of the Smoothing parameter (λ)
b t-value instead of F-value
c taking parametric dispersion term into account

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Source: Own calculations
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Table 6: Bivariate penalized GAM model estimates: Poland (PLt)

GAM component EDF Smoothing
parameter, λ

F value

Model I (PL∼SK, 3 lags)
Parametric components
Intercept, β0 1.000 5.004 a 7877b***
Non-parametric components
s(SKt−1) 1.000 5353725 4.55**
s(SKt−2) 3.16 2.044594 2.25*
s(SKt−3) 1.000 161046 0.088
s(PLt−1) 1.000 4075391 2550.90***
s(PLt−2) 6.496 0.047295 40.49***
s(PLt−3) 6.547 0.046662 11.98***

Total EDFc 21.203
adj.R2 =0.982
GCV score, GAM: 0.0004026,VAR:0.0004161
AIC(GAM)=-4868,49;AIC(VAR)=-4835.90
LR-test of linear VAR vs.GAM, Test statistic=3.7464***

Model II (PL∼CZ, 3 lags)
Parametric components
Intercept, β0 1.000 5.004 a 7866b***
Non-parametric components
s(CZt−1) 1.000 1644205 4.53**
s(CZt−2) 2.836 1.620458 2.96**
s(CZt−3) 1.000 2531997 4.41**
s(PLt−1) 1.000 33811870 2317.42***
s(PLt−2) 6.987 0.033371 37.38***
s(PLt−3) 6.268 0.053058 10.13***

Total EDFc 21.091
adj.R2 =0.982
GCV score, GAM: 0.000404,VAR:0.000415745
AIC(GAM)=-4865.16;AIC(VAR)=-4836.77
LR-test of linear VAR vs.GAM, Test statistic=3.3936***

Model III (PL∼HU, 3 lags)
Parametric components
Intercept, β0 1.000 5.004 a 7870b***
Non-parametric components
s(HUt−1) 1.000 10762970 7.33***
s(HUt−2) 1.000 14249270 7.99***
s(HUt−3) 1.817 4.380433 2.54*
s(PLt−1) 1.000 5368609 1961.52***
s(PLt−2) 6.736 0.039270 34.86***
s(PLt−3) 6.589 0.043820 9.92***

Total EDFc 20.142
adj.R2 =0.982
GCV score, GAM: 0.0004032,VAR:0.0004151
AIC(GAM)=-4867.02;AIC(VAR)=-4838.31
LR-test of linear VAR vs.GAM, Test statistic=3.5802***
a estimate for constant by penalized MLE in place of the Smoothing parameter (λ)
b t-value instead of F-value
c taking parametric dispersion term into account

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Source: Own calculations
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sion has improvements over typical linear VAR model. The first evidence of that can be
found with a comparison of the Akaike information criterias (AIC) and generalized cross-
validation (GCV) scores. In order to define the better model, we orient on the lowest AIC
and GCV values. The second one is that the likelihood ratio tests are used. They have
shown that test statistics are highly significant in every case (see tables 3 - 6).

Unlike other non-parametric approaches, the significant advantage of GAMs is that
they are relatively interpretable. Typical approach for GAMs is plotting the partial effects
and inspect the relationships between response price variables (in our case CZt, SKt, HUt

and PLt ) and predictors visually. Visual GAM model output in the aspect of partial
effects shows the impact of selected lagged price variable on the response, assuming that
the rest of model predictors equals to it’s mean value (see A). The findings from plots in
appendix A imply that asymmetry exists in terms of the disproportionate response to the
appropriate predictor increase. We can observe asymmetry in price transmission between
Polish market and others. In other words, response price variable reacts differently to
the changes of the same lagged variables. More precisely, price SKt responds to the
changes of lagged price variable SKt−1 with non-linear increasing, to the lagged price
variable SKt−2 with ”wiggly” decreasing and increasing, to the lagged variable PLt−3

with non-linear increasing and then decreasing. At the same time, price PLt reacts to the
changes of the lagged price variables (SKt−1, SKt−2, PLt−3) in a different way, namely
to the lagged price SKt−1 with linear increasing, to the lagged price SKt−2 with slight
non-linear decreasing, to the lagged price PLt−3 with non-linear increasing. Similarly, we
can find asymmetries in other price pairs with Polish market (see appendix A.6).

5 Conclusions
Being in line with the last studies on non-linear time series models of spatial agri-food
price transmission and market integration, we use non-parametric generalized additive
model to give evidence of non-linear nature in price relationships. The advantage of
the GAM approach is that researcher is not limited to global basis expansions of model
covariates. Instead a wide range of penalized spline bases is used which may better
adapt to the price data rather than imposing a concrete functional form (for instance,
polynomial regressions). Indeed, the polynomial can be significantly inflexible for complex
nonlinear interactions. The non-parametric GAMs reveal better description for spatial
price transmission in pigmeat markets of V4 countries in comparison with linear VAR
modelling, that is in line with the findings of Guney et al. (2019) and Goodwin et al.
(2021) for USA food markets. Our study fills the gap in the empirical literature on
horizontal price transmission in EU agri-food markets based on GAM modelling.

A consideration of horizontal price transmission by means of the advanced economet-

21 Working Paper



ric techniques is used to address a variety of economic issues. We have detected the
assumption about well integrated pig-meat V4 markets in terms of non-linear price rela-
tionships. The price transmission ”wiggliness” has been estimated and the most ”wiggly”
non-linear pattern has been revealed between Slovak-Polish and Slovak-Czech pig-meat
markets. Asymmetries also exist in the non-linear relationships between V4 markets in
terms of the disproportionate response to the appropriate price predictor increase. The
findings of our research will provide important information for the decision-making field.
Understanding the nature of spatial price transmission can have considerable welfare and
policy implications. We suggest the following measures in order to stabilise Slovak pig-
meat market and mitigate the price asymmetry. Firstly, it is important to balance the
regulatory environment and avoid cutting off state support: the support system for the
pig-meat producers must be effective and sustainable. Secondly, there is also scope for
improving the transparency in price formation along the supply chain.

In the aspect of food security, it is necessary to prevent the import of food products to
Slovakia at dumping prices, as well as margin distribution and the misuse of the dominant
market position of retailers should be solved at the national and EU levels.

This study can be extended with considering multivariate GAM in VAR representa-
tion. In order to build more flexible GAM models, another spline alternatives could be
used with incorporating interactions between lagged price variables, generalized impulse
response function analysis might also be of interest.
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A GAM partial effects of one particular predictor on
response

A.1 Czechia & Hungary

GAM (VAR representation CZ∼HU, 2 lags)
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A.2 Czechia & Poland

GAM (VAR representation CZ∼PL, 3 lags)
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A.3 Czechia & Slovakia

GAM (VAR representation CZ∼SK, 2 lags)
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A.4 Hungary & Poland

GAM (VAR representation HU∼PL, 3 lags)
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A.5 Hungary & Slovakia

GAM (VAR representation HU∼SK, 2 lags)
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A.6 Poland & Slovakia

GAM (VAR representation PL∼SK, 3 lags)
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B Some diagnostics for the fitted GAMs

B.1 Czechia & Hungary

Robustness checking for the GAM (CZ∼HU)
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B.2 Czechia & Poland

Robustness checking for the GAM (CZ∼PL)
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B.3 Czechia & Slovakia

Robustness checking for the GAM (CZ∼SK)

−0.05

0.00

0.05

−0.025 0.000 0.025
Theoretical quantiles

de
vi

an
ce

 r
es

id
ua

ls
Q−Q Plot, method = simul1

−0.05

0.00

0.05

0.10

4.8 5.0 5.2
linear predictor

re
si

du
al

s

Resids vs. linear pred.

0

50

100

150

200

−0.05 0.00 0.05 0.10
resid

co
un

t

Histogram of residuals

4.8

5.0

5.2

5.4

4.8 5.0 5.2
Fitted Values

R
es

po
ns

e

Response vs. Fitted Values

Robustness checking for the GAM (SK∼CZ)

−0.2

−0.1

0.0

0.1

−0.06 −0.03 0.00 0.03 0.06
Theoretical quantiles

de
vi

an
ce

 r
es

id
ua

ls

Q−Q Plot, method = simul1

−0.2

−0.1

0.0

0.1

4.8 5.0 5.2
linear predictor

re
si

du
al

s

Resids vs. linear pred.

0

100

200

300

−0.2 −0.1 0.0 0.1
resid

co
un

t

Histogram of residuals

4.8

5.0

5.2

5.4

4.8 5.0 5.2
Fitted Values

R
es

po
ns

e

Response vs. Fitted Values

38 Working Paper



B.4 Hungary & Poland

Robustness checking for the GAM (HU∼PL)
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Robustness checking for the GAM (HU∼SK)
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Robustness checking for the GAM (PL∼SK)
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Robustness checking for the GAM (SK∼PL)
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